
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1960

Selection of optimum filtration rates for sand filters
John LeRoy Cleasby
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Civil and Environmental Engineering Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Cleasby, John LeRoy, "Selection of optimum filtration rates for sand filters " (1960). Retrospective Theses and Dissertations. 2815.
https://lib.dr.iastate.edu/rtd/2815

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F2815&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F2815&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F2815&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F2815&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F2815&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F2815&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/251?utm_source=lib.dr.iastate.edu%2Frtd%2F2815&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/2815?utm_source=lib.dr.iastate.edu%2Frtd%2F2815&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com

SELECTION OF OPTIMUM FILTRATION BATES FOB 3AKD FILTERS 

A Dissertation Submitted to the 

Graduate Faculty in Partial Fulfillment of 

The Requirements for the Degree of 

DOCTOR OF PHILOSOPHY 

Major Subjects Sanitary Engineering 

ty 

John Le Boy Classby 

Approved: 

In Charge of Major Work 

Iowa State University 
Of Science and Technology 

Ames, Iowa 

I960 

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.



www.manaraa.com

il 

TABLE OF CONTENTS 

Page 

LIST OF ABBREVIATIONS vil 

I. INTRODUCTION 1 

II. WORK OF OTHER INVESTIGATORS 4 

A. Early Development of Rapid Sand Filters 4 
B. Studies of High Rate Filtration 6 
C. Summary of Status of High Rate Filtration 19 
D. Studies of the Functioning of Sand Filters 20 

III. OBJECTIVES AND SCOPE OF THIS STUDY 31 

IV. PILOT PLANT APPARATUS 35 

A. Pumps and Tanks 35 
B. Filters and Appurtenances 36 

V. EXPERIMENTAL OBSERVATIONS 48 

A. General 48 
B. Laboratory Techniques 48 
C. Effluent Water Quality Requirements 55 
D. Brief Chronology of Experimental Runs 56 
E. Refinements in Operational Technique 60 
F. Experimental Runs without a Pronounced Optimum Bate 66 
G. Experimental Rons with a Pronounced Optimum Rate 78 

VI. SEASONS FOR AN OPTIMUM RATE TENDENCY 92 

A. General 92 
B. Hydraulic Conditions Existing in a Dirty Filter 92 
C. Utilization of Filter Voids at Various Rates 101 
D. The Role of Surface Removal with an Optimum Hate 108 
E. Conclusions 125 

VII. EXPLANATION OF EFFLUENT QUALITY BEHAVIOR 127 

A. Effect of Filtration Rate on Effluent Quality 127 
B. Filtrate Quality at Various Depths 131 
C. Effluent Quality During a Filter Run 132 
D. Relationship of Curve Type to Effluent Quality 133a 
E. Evaluation of Predominant Removal Mechanism 135a 
F. Effect of Rate Changes on Effluent Quality 139 
G. A Choice! Constant Rate, Constant Pressure, or 

Uncontrolled Filtration 144 

VIII. SUMMARY AND CONCLUSIONS 149 



www.manaraa.com

i i i  

Page 

A. Present Status of Water Filtration 1̂ 9 
B. Investigations 150 
C„ Conclusions 151 

IX. BIBLIOGEAPHT 157 

X. ACEN 0 WIEDGMENT S 161 



www.manaraa.com

Page 

33 

38 

ko 

43b 

Wb 

46 

64 

68 

70 

72 

75 

77 

80 

82 

84 

86 

95 

97 

99 

104 

111 

113 

iv 

LIST OF FIGURES 

Schematic arrangement of pilot sand filters and 
auxiliary equipment 

Pilot sand filter and control equipment 

Pilot sand filters and bottom of piezometer boards 

Flow meter 

Photoelectric turbidimeter 

Filter rate of flow controllers 

Run 17, total head loss vs. filtrate volume 

Run 16, total head loss vs. filtrate volume 

Run 22, total head loss vs. filtrate volume 

Run 23, total head loss vs. filtrate volume 

Run 23, initial effluent improvement 

Run 23, effluent iron content vs. filtrate volume 

Run 18, total head loss vs. filtrate volume 

Run 19, total head loss vs. filtrate volume 

Run 24, total head loss vs. filtrate volume 

Run 25, total head loss vs. filtrate volume 

Run 23, demonstration of laminar flow in a dirty filter 

Run 24, demonstration of laminar flow in a dirty filter 

Run 24, demonstration of laminar flow in a dirty filter 

Relation of hydraulic gradient to porosity 

Run 23, head loss in the top 1 in. layer vs. filtrate 
volume 

Run 24, head loss in the top 1 in. layer vs. filtrate 
volume 



www.manaraa.com

V 

Page 

Figure 23. Hun 24, head loss excluding top 1 in. layer vs. 
filtrate volume 115 

Figure 24. Total head loss vs. filtrate volume for dlatomite 
filters without body feed 119 

Figure 25. Ban 24, surface cake head loss vs. filtrate volume 124 

Figure 26. Initial effluent quality vs. filtration rate 129 

Figure 27. Iron concentration in the filtrate vs. depth for 
runs 21 and 22 134 

Figure 28. Iron concentration in the filtrate vs. depth at 
various times during run 22 135c 

Figure 29. Run 14, effluent iron content vs. time following rate 
disturbance 141 



www.manaraa.com

vi 

LIST OF TABLES 

Table 1. 

Table 2. 

Table 3° 

Table 4. 

Table 5. 

Table 6. 

Table 7. 

Table 8. 

Table 9» 

Table 10. 

Table 11. 

Table 12a. 

Table 12b. 

Table 13. 

Page 

Effect of filtration rate on relative water 
production 8 

Sunmary of Chicago plant-scale experience with high 
filtration rates 10 

Selative water production per run at various filtration 
rates at Chicago 11 

High rate filtration data at Durham, U. Carolina 13 

High rat& filtration data at Washington, D. C. 14 

Filter sand characteristics 42 

Summary of experimental runs on pilot plant filters 58 

Summary of effluent iron content, run 23 78 

Average filter influent quality in runs 18, 19, 24 and 25 8? 

Effluent water turbidity in runs 18, 19, 24 and 25 

Relative water production in runs 18, 19, 24 and 25 

Percent void utilization in a dirty filter bed 

Depth of stored material in a dirty filter bed 

Particle compressibility "s" in runs 18, 19, 20, 24 
and 25 

Table 14. Effect of rate increase on head loss, run 14, filter 2 

89 

90 

106 

107 

122 

143 



www.manaraa.com

vil 

LIST OF ABBREVIATIONS 

centimeter cm 

feet ft 

feet per day ft/day 

gallons per minute per square foot gpm/sq ft 

gallons per square foot per day gal/sq ft/day 

hour hr 

horse power hp 

inch in. 

inside diameter ID 

meter m 

micron /f 

milligram per liter mg/l 

millimeter mm 

million gallone mil gal 

million gallons per acre per day mgad 

million gallons per day mgd 

negative log of the hydrogen ion concentration pH 

parts per million "by weight ppm 

square feet sq ft 

temperature, degrees Fahrenheit °F 

versus vs. 



www.manaraa.com

1 

I. INTRODUCTION 

The most common processes of surface end ground water treatment 

include filtration of the water through a layer of sand as the final 

clarification step in the treatment. The modern sand filter used in mu

nicipal practice usually consista of an open watertight rectangular tank 

generally greater than eight ft deep, containing a layer of sand 24 to 36 

in. thick supported on a layer of graded gravel 6 to 12 in. thick. Th® 

tanks are generally made of reinforced concrete. The gravel is underlain 

by an underdrainage system which leads to a common point of outlet. Dur

ing normal operation, water to be filtered is maintained at a nearly con

stant level 4 to 6 ft above the sand surface and flows through the filter 

by gravity. A constant rate of filtration is maintained by a rate of flow 

controller in the outlet pipe. 

As filtration proceeds, the sediment removed froE the water builds 

up in the sand layer resulting in an increasing pressure drop or head loss 

through the sand layer. The rat© of flow controller gradually opens the 

outlet valve to offset the reduced pressure in the outlet pipe. When un

acceptable water begins to pass the filter, or when the head loss becomes 

exceasivo, the filter is cleaned or backyashed by reversing the flou of 

water. Water is admitted under pressure into the underdrain system at 

such a rate that the upward flow of water will expand the sand bed about 

50 percent. The rising water, carrying with it the sediment removed from 

the sand, flows into washwater gutters which conduct the water to waste. 

The clean filter is then placed back in service. The period of operation 

from one backwash to the next is known as a "filter run", and varies in 



www.manaraa.com

2 

length for different conditions from a few hours to several days. 

Since the historic work of Puller (26) in 1897» rates of filtration 

for sand filters have been commonly standardised at 2 gpsa/sq ft. With 

the ever increasing population of the United States, particularly in urban 

areas, and the ever increasing demand for water per capita, many cities 

have found their filtration capacity at this standard filtration rate in

adequate during peak demand seasons. If these towns could produce an 

acceptable water at higher filtration rates, they might be able to delay 

the large capital expenditure required for increased filtration plant 

capacity. 

Daring the past twenty years, considerable work has been done with 

higher filtration rates and many plants are now operated at rates above 

2 gpa/sq ft during peak water demand seasons. In those plants consider

ing the use of higher rates, the plant operator or consulting engineer 

should consider two questionsî 

a. Can acceptable water b© produced at higher filtration rates? 

b. Within the range of rates where acceptable water can be pro

duced, what is the optimum rate from the standpoint of maximum 

production per filter run? 

High rate filtration experiences reported to date generally contain 

no reference to the latter question, indicating that the researchers may 

be unaware of its possible existence, or its importance. The evaluation 

of this question is the objective of this study; namely, under what condi

tions , if any, can an optimum rate of filtration be espected, and how can 

it be identified.7 

If an increase in production of water per filter run is possible by 
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operation at an optimum rate, two economies may be realised. A lower plant 

investment will be required for a given capacity if the optimum rats is 

above the standard rate. Operating costs will be lower due to the smaller 

physical plant and smaller percentage of water used in backwashing. 
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II. V/OHK OF OTHER INVESTIGATORS 

A. Early Development of Sapid Sand Filters 

The history of water treatment has been well covered "by Baker (5) 

and only those portions pertinent to this study will be summarized her©. 

The send filtration of water without pretreatment at rates of approximately 

three mgad began in 1829 in England and the use of such filters was fairly 

widespread in Europe in the late nineteenth century. Successful use of 

these English or slow sand filters was also made in the United States on 

raw water supplies that did not carry a heavy colloidal sediment load. 

The use of slow sand filters on unprotreated water containing a heavy 

colloidal sediment load was generally unsuccessful because of the short 

filter runs, which resulted from the rapid formation of a surface sediment 

layer, and deep penetration of the sediment into the sand. Since the slow 

aand filter was cleaned manually by periodic removal of the dirty surface 

sand layer, deep penetration and short filter runs could not be permitted. 

This difficulty led to the development of the American or rapid sand 

filter system in which aluminum or iron salts were used to coagulate the 

colloidal matter prior to filtration. The early rapid sand filter systems 

were proprietary devices, the first one patented by I. W. Hyatt in 1884. 

A number of others were on the market in the mid 1890's when 0. W. Fuller 

was retained by the Louisville Water Company to test the suitability of 

rapid sand filters for the treatment of Ohio River water at Louisville, 

Kentucky. Various companies installed their filter equipment at Louisville 

for test under Fuller's direction. The equipment installed had the follow

ing general characteristics t 
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a. All plants had a capacity of 0.25 Sand filtering area, 8and 

size, sand depth and method of applying coagulant were fixed by 

the company supplying the equipment. 

b. Most of the devices added coagulant to the water as it entered 

the filter box above the sand. Ho separate mixing and settling 

was practiced prior to filtration. 

c. Most of the devices were cleaned by an upward flow of water 

through the sand which flushed out the sediment so the sand could 

be reused. 

These proprietary devices were operated at a rat© of 0.25 egd which 

was equivalent to rates of from 35 to 213 Egad. Most of the experimental 

runs were made at rates of from 80 to lf& mgad. Fuller (26) concluded 

that none of these proprietary devices were continually adequate due to 

the lack of separate coagulation and settling. He also concluded that the 

lower rates of filtration with these devices did not give significantly 

better effluent than the higher rates, and that the maxima safe rates 

were not reached in this work. He recommended that rates be not less than 

100 mgad and inferred that higher rates should be considered since the rate 

of filtration was a predominant factor in the cost of treatment. 

Fuller continued his work using separate tanks for pretreatoent con

sisting of plain sedimentation, coagulation and sedimentation of the coag

ulated water prior to filtration. In these tests, he was limited to maxi

mum filtration rates of 9̂  mgad by the physical nature of the equipment in 

use. He concluded that with Inadequate coagulation, good filtered water 

could not be obtained even at rates as low as 50 mgad. With adequate co

agulation, he felt rates could be increased materially above those he 
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studied. He recommended 100 mgad for Louisville with the knowledge that 

the rates would be increased to at least 150 mgad ao the water demand in

creased. 

These recommendations led to the widespread use of filtration ratea 

of about 125 agad from the time of Fuller's work to the present. Suc

cessful filtration at this rata over so long a period has led to the con

clusion by many regulatory agency personnel, that 125 egad (2 gpa/sq ft) 

ia the maximum acceptable rate of filtration, and often cite Puller's 

studies as their basis. It is apparent from hie original study that Fuller 

believed considerably higher rates were possible if adequate pretreatment 

was provided. On the other hand, without adequate pretreatment, even lower 

rates may not produce acceptable water. 

B. Studies of High Bate Filtration 

She tremendous increase in filtration rates from tho old slow sand 

filters to the rapid sand filters must have been such an Improvement that 

for many years no one considered the possibility that improvement was 

still possible. At the time of Fuller's work chlorination of water sup

plies had not yet commenced and the filter was the final safeguard against 

the passage of pathogens to the consumer. Perhaps it was only natural 

that once relatively successful treatment had been obtained at 2 gpm/eq ft, 

nobody would consider risking any detriment to quality by venturing to use 

higher filtration rates. With the establishment of chlorination for water 

disinfection during the 1900-1910 decade, the filter had an invaluable 

ally in the control of disease. With the Improvement of pretreatment, 

the filter gradually assumed the role of a polishing step to assure low 
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finished-water turbidity, and chlorination was depended on for the final 

bacterial control step. Filtration rates of 2 gpm/gq ft remained un

challenged until the work of B&ylis which began in 1928 at the Chicago 

Experimental Filtration Plant. Baylie (9,10,11) and Hudson (33) reported 

on the effect of rate of filtration on length of filter ran for pilot 

scale studies at the Chicago Experimental Filtration Plant. These studies 

were made using sand with an effective sise of approximately 0.59 am in 

steel circular filters with 10 sq ft surface area, and glass tube filters 

with 0.017 sq ft surface area. Coagulated settled water was filtered in 

all tests. Tests were conducted during periods of ''strong coagulation61 

when good filter effluent quality was obtained. 

On the 10 sq ft filters, studies were conducted with filtration rates 

from 1.6 to 3.5 gpa/sq ft. Influent turbidity averaged 7.68 units and ef

fluent turbidity ranged from 0.06 units at the lower rate to 0.09 units at 

the higher rate. Effluent bacteria averaged 60 per ml at 37° C and did not 

increase at the higher rates. Effluent E. Coll per hundred ml increased 

from 3.5 at the lower rate to 5-6 at the higher rate. One plot indicating 

a linear relation of head loss vs. time at 2 gpm/sq ft was reported (9) .  

On the 0.017 sq ft filters, studies were conducted at rates from 1 to 6 

gpm/sq ft. 

On the basis of the test results Baylis and Hudson both reported that 

the length of filter run in hours was inversely proportional to the 1.5 

power of the filtration rate. An analysis of the original data, however, 

reveals aom© interesting facta about the relative production at different 

rates. Table 1 is an analysis of the data presented by Hudson (33) for 

relative filtrate production per ft head loss increase and per filter run. 
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Table 1„ Effect of filtration rate on relative water productiona 

Filter 
sise 

(sq ft) 

Period 
of 
study 

Filtration Relative 
rate production 

(gpa/aq ft) (per run)b 

Selative 
production 
(per ft)c 

Average 
run length 
(hours) 

10 1928-29 1.6 1.02 0.99 25.8 
10 1928-29 2.0 1.00 1.00 20.1 
10 1928-29 2.4 0.92 0.87 15.4 
10 1928-29 2.8 0.79 0.84 11.3 

10 1932* 2.0 1.00 1.00 33.58 
10 1932 2.5 0.77 0.80 20.75 
10 1932 3.0 0.77 0.81 17.25 
10 1932 3.5 0.72 0.80 13.86 

0.017 1931-32® 1 0.92 0.85 48.2 
0.017 1931-32 2 1.00 1.00 26.1 
0.017 1931-32 3 0.77 0.82 13.4 
0.017 1931-32 4 0.76 0.88 9.90 
0.017 1931-32 5 0.58 0.75 6.13 
0.017 1931-32 6 0.48 0.68 4.26 

aAnalyeig of data presented by Hudson (33) • 

P̂er filter run to a terminal total head loag of 8 ft with 2 gpm/oq 
ft considered unity. 

cPer ft of head lose increase with 2 gpm/sq ft considered unity. 

Ĵan. 5» 1932 to June 16, 1932. 

®Dec. 4, 1931 to Feb. 21, 1932. 

A study of Sable 1 indicates that although the run length may be greatly 

reduced, the production per run or per ft head loae increase is net so 

greatly affected. In fact, a alight optimum is evident at 2 gpa/aq ft on 

the small filters. 

Many surface water plants experience periods of "weak coagulation6 

when the floe will readily pass through the filters at low head loss, even 

at filtration rates of 2 gpm/aq. ft. During such periods, rune are tor-
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minated on observation of decreased filtered water clarity rather than on 

the development of Eiaxioora head loss. The practical uoe of higher filtra

tion rates at such plants hinged upon the solution of this problem. In 

1937, Baylis (12) reported the use of colloidal hydrous silicon dioxide 

(now called activated silica) as an aid to coagulation during such periods. 

He observed that the passage of floe and turbidity through a filter at 

2.5 and 3 gpm/sq. ft was prevented by addition of activated silica during 

a period of flweak coagulation", when the floe would readily pass without 

the additive. This development opened the way for increased opportunity 

in the use of high filtration rates. 

On the basis of the high rate experience with the experimental plant 

and the development of a floe strengthening agent, the Chicago South Dis

trict Filtration Plant was designed and constructed for operation at 3 

gpm/sq ft during the winter low demand season, and up to 4.5 gpm/sq ft 

during peak earner periods. From time to time, JB&ylic has reported oa 

plant scale experience at rates up to 5 gpm/sq ft (13,14,15,18). Filters 

were operated continuously at rates of 2, 4, 4.5, and 5 gpa/aq ft. The 

10-year results of the Chicago experience are summarised in Table 2. All 

tests were made while filtering alum coagulated Lake Michigan water which 

was settled prior to filtration. Activated silica was used to strengthen 

the floe during periods of weak coagulation. Sand effective sise in the 

filters was 0,65 

The short runs obtained at high rates are due partly to high initial 

losses in sand, gravel, underdrains and outlet control piping at high 

rates, which results in a relatively small available head loss increase. 

In each reference, Baylis suggests deeper penetration as the reason 
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Table 2. Summary of Chicago pl&nfc-eeale experience with high filtration 
rates& 

Sate Year t IlBa ,lB Effluent 
(Wh«) reported „uaHt»= 

4 1949 (13) 15.4 
4.5 1949 (13) 10.4 

5 1949 (13) 8.1 

2 1950 (14) 0.60-0.7% 
4 1950 (14) 13.8 0.89-1.03 
4.5 1950 (14) 11.3 0.96-1.03 
5 1950 (14) 9.3 1.07-1.10 

2 1956 (15) 28.7 0.71 98.9 0.044 
4 1956 (15) 15.4 1.02 97.9 0.059 
4.5 1956 (15) 13.5 1.07 97.6 0.072 
5 1956 (15) 10.2 1.10 96.7 0.077 

2 1959 (18) 26.5 0.66 
4 1959 (18) 14.0 0.92 
4.5 1959 (18) 11.7 0.92 
5 1959 (18) 9.8 0.99 

F̂rom reports of Baylia (13,14,15,18). 

M̂illion gallons per ft of head loss increase. 

cAverage coagulated matter in the effluent "by cotton plug filter 
testa (ppm). 

for the higher performance at high rates but does not support this hypoth

esis with experimental evidence. He also notes (15) that in some cases 

the head loss increase per hour at the end of the run la slightly greater 

than at the beginning. At higher rates, the total increase In head avail

able is not as great due to higher initial head loss and thus, the run 

Bay not enter the steeper range at the higher rates. 

If the relative production per run ie calculated based on average run 
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length and filtration rate, the results shown in Table 3 are obtained. 

Table 3» Relative water production psr run at various filtration rates 
at Chicago® 

Data Filtration rate (gpm/sq ft) 
reported 2 4 4.5 5 

19̂ 9 (13) 1.00 0,76 0.66 
1950 (14) 1.00 0.92 0.84 
1956 (15) 0.94 1.00 0.99 0.83 
1959 (18 ) 0.93 1.00 0.92 O.85 

®from reports of Baylis (13,14,15,18) with 4 gpa/sq ft considered 
unity. 

The data in Table 3 clearly indicates a slight optimum filtration 

rate at approximately 4 gpen/sq ft. The results summarized here cover sev

eral characteristic periods of microorganism content in the raw water. 

Heavy microorganism populations causes short runs and head lose may develop 

at an increased rate towards the end of the run. Very light populations 

may yield long rune with nearly linear total head loss vs. time curves. 

Intermediate populations yield moderate runs of about 20 hours with slight

ly Increased rate of head loss development aa the run progresses (16). 

After ten years of experience with high rate filtration at Chicago, 

Baylia (18) concludes that sand filters will produce satisfactory quality 

water at 5 gpm/sq ft but recommends that such rates only be used during 

peak summer demand periods due to the short runs caused by high initial 

head loss. In these extensive studies no meaeureable detriment to tur

bidity or bacterial content was observed at high rates. A alight increase 

in coagulated matter passing the filter was observed with the cotton plug 
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filter. 

Gteyer and Machis (27) in an estenoive series of studies of filtration 

at rates of 2 to 10 gpa/eq ft found that the volume of water produced per 

ran increased as the rate increased. They reported relative production 

volumes of 1:1.75*2.65 for rates of 2:3.6:6 gpa/sq. ft respectively. The 

filter sand had a mean geometric sise of 0.27 cm and runs were terminated 

at a terminal head loss of 30 ft of water. Alum coagulated Baltimore city 

tap water was filtered in these studies. The floe was kept in suspension 

by agitation and the water was not settled prior to filtration. Effluent 

turbidity was less than 0.3 units in all teste, being slightly poorer at 

high rates. Head Iobb was found to be proportional to the second power of 

the volume of water produced. These results are contradictory to the early 

work of Baylis (10,11) and Hudson (33) which indicated reduced water pro

duction per run as filtration rates were increased. When coarse 1.1 ma 

sand was used in further experiments, G-eyer and Machis noted that the 

trend toward increased production per run at high rates was reversed, 6 

percent less water being produced at 6 gpm/sq ft than at 2 gpm/sq ft. 

Hazen (30) emphasized the importance of adequate pretreatment to the 

use of higher filtration rates. He also cautions against the use of rates 

greater than 2 gpm/sq ft if activated carbon is being used as a taste 

control. 

Holbert and Feben (43) reported on plant scale studies at the Water 

Works Park filtration plant at Detroit, Michigan at rates of from 2.2 to 

3.2 gpm/sq ft. They found the rate of head loss increase (ft/day) to be 

directly proportional to the filtration rate. Thus, the production of 

water per ft of head loss increase would be the same regardless of rate. 
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Brown (19) reported on 3 years of plant scale high rate filtration 

studies at Durham, N. Carolina. Prechlorinated water which had "been co

agulated with alum and lime was settled prior to filtration. The filter 

sand had an effective size of 0.55 mm. His data summary is reproduced "be

low in Table 4. An analysis of these data for relative production per run 

clearly indicates a slight optimum rate at 3 gpm/sq ft. The relative pro

duction per run is 1:1.29;1.20 at 2, 3 » and 4 gpm/sq ft respectively. 

Table 4. High rate filtration data at Durham, F. Carolina8, 

Filter number 

12 13 14 

Eate (gpm/sq ft) 2 3 4 
Length of run (hr) 135*2 116.7 81.3 
Turbidity (ppm) 0.34 0.38 0.43 
Bacteria (colonies/ml) 0.32 0.42 O.36 
Coliforms neg. neg. neg. 
f/asn water (percent) 1.21 0.89 0.99 

R̂eproduced from the report of Brown (19). 

Brown concluded that high filtration rates were acceptable if compe

tent supervision was available. Total head loss vs. time data were ob

tained from Brown"*". When plotted with total head loss as ordinate, the 

curves were linear to slightly concave upward. The curves were highly 

erratic since the data were taken from circular chart recorders which he 

considered rather crude devices. 

B̂rown, V. G., Municipal water plant, Durham, N. C. Water filtra
tion plant filter head loss experience. Private communication. Feb. 1?, 
I960.' 
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Jackson (46) reported successful plant scale high rate operation using 

both sand and anthracite filtering media. Potomac River water was treated 

by prechlorination, liquid alma coagulation and settling prior to filtra

tion. Fifteen in. of sand with an effective sis© of 0.<6 mm was used in 

two filters under study while anthracite was used in other filters. One 

series of studies was made at constant rates of from 1.5 to 4.5 gpm/sq. ft. 

Comparative production data were presented on two anthracite filters. 

Rons were terminated at low head losses of considerably different magni

tude; therefore, the data on production per ft of head loaa is the best 

means of comparison. These data are reproduced in Table 5» 

Table 5« High rate filtration data at Washington, D. G.a 

Date & 
run no. 

Filter 
no. 

Bate 
(gpa/ 
sq ft) 

Bun 
length 
(hr) 

Initial 
loss 
(ft) 

Final 
loss 
(ft) 

Production 
(all gal/ft 
increase) 

June '55, Part ?, 

Bon 2 22 3.0 72 0.89 3.83 6.34 
24 3.0 66 0.66 3.66 5.63 

Kan 3 22 4.0 26 1.21 2.53 6.60 
24 4.0 22 1.19 2.67 5.26 

Ban 4 22 2.0 75 0.53 3.83 3.52 
24 2.0 75 0.50 4.91 2.76 

Bun 5 22 1.5 58 0.33 2.18 4.20 
24 2.0 42 O.52 1.95 4.57 

October 1 53, Part 3 

Bun 1 22 4.5 24 1.76 3.43 5-38 
24 4.0 24 1.23 3.10 4.55 

aFroa the report of Jackson (46). 
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Production per feet of head loss increase was approximately the sac® 

from 3 to 4.5 gpszi/oq. ft averaging about 5 = 6 mil gal which Is slightly 

better than the production at lower rates. One graph was presented show

ing a linear relation between total head loss and time at 4 gpm/sq ft, 

and nearly linear at 3 gpa/eq ft. Effluent turbidity was not recorded 

during these studies. Residual aluminum in the effluent was observed and 

found to average about 30 percent of the influent aluminum which averaged 

about 0.20 ppm. Mud and floe were readily observed in the anthracite to 

within 2 in. of the bottom at rates of 4.5 gpm/sq. ft. Floe was observed 

in the bottom 2 in. with the aid of a microscope. This author also pre

sented some experimental data on constant pressure (declining rate) 

filtration. 

Tso-Ti Ling (53) studied rates of filtration from 1 to 5»5 gpn/eq ft 

using a small laboratory scale plant consisting of a mixing tank, floc-

culation tank, settling tank and 2-l/2 in. ID plexiglass filters. Tap 

water with added diatomaceoue earth for turbidity was coagulated with 

ferric chloride and slaked lime. Two series of tests were conducted using 

uniform sized sand in all filters in each series. The effective sise of the 

sand was 0.458 mm in the first and 0.383 mm in the second series. The 

head loss vs. time curves in all cases were linear for all incremental 

portions of the bed except the top one in. layer. The rate of head loss 

increase In the top 1 in. layer dropped off slightly towards the end of the 

run. Ban length for a 24 in. graded sand filter was found to be inversely 

proportional to the 1.23 power of the filtration rate. With uniform sand, 

the exponent was 1.48. Total head losses were measured from the top to 

the bottom of the sand layer. Bona were made with terminal losses of four. 
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five, and seven feet, but the relation between head loss and run length 

was the same, regardless of the terminal loss. This relationship was 

also independent of the sand sise. These results are in reasonably close 

agreement with those of Hudson (33) and Baylis (9,10,11). 

Stanley (51) studied filtration of homogenized iron floe labeled with 

a radioactive iodine tracer. Filter containers were 1-1/2 in. ID lucite 

tubea. The penetration rate of the labeled iron floe was observed with a 

Geiger tube. The penetration rate was directly proportional to the filtra

tion rate for a given sand sise. Head loss vs. time curves for these 

studies were linear. The effect of filtration rate on the penetration 

rate was observed for 20-30 meah sand (0.84-0.59 nun) and 40-50 mesh sand 

(0.42-0.29 ram). Bo data were reported on actual iron concentration in 

the effluent, but the penetration depth was arbitrarily described as that 

depth in the bed where the radioactive count was equal to the background 

count plus one standard deviation. He observed that the run length to 

an 8 ft head loss was inversely proportional to the 0.6 power of the fil

tration rate indicating improved production at higher rates. Full pene

tration, as defined, did not occur within the rates and sand sizes studied. 

Therefore, since the penetration rate was directly proportional to the 

filtration rate, one would expect improved production volume at the higher 

filtration rates due to the greater utilisation of the sand bed. 

Hudson (36) states that higher rates result in greater penetration 

of material into the filter and thus greater water production per unit 

increase in head loss. The water quality can be safeguarded by using 

greater sand depths or reducing the terminal head loss. Filtration rates 

of 10 gpm/aq ft are possible without deterioration of quality if grain 



www.manaraa.com

17 

aise and depth of filter oand are proper. However, in a later article 

(38) he states that high rates may result in less production per run. 

Conley and Pitman (20) studied rates of filtration from 2 to 35 

gpm/sq ft on sand and sand-anthracite pilot filters. They found that the 

use of polyalectrolyte coagulant aid in the filter influent water resulted 

in equal effluent quality at all rates. However, an upper practical limit 

of 8 to 10 gpo/oq ft was suggested due to rapid head loss build up at 

higher rates resulting in short filter runs. An upper limit of 0.01 ppm 

of turbidity was set as the maxlaum acceptable effluent level. A light 

scattering microphotometor was used in turbidity measurement, however, 

the means of calibration leaves considerable doubt as to the true value 

of effluent turbidity. They observed the distribution of head loss 

through the filter bed and concluded that acceptable run length can be ob

tained by permitting deep penetration of material into the bed. They 

stated that the penetration depth could be controlled by the use of the 

coagulant aid. 

Eolluta and Eberhardt (32) studied the filtration of iron bearing 

water at rates between 2 and 16 gpm/sq ft on a pilot pressure sand filter 

to terminal head losses of JO to 45 ft. Hard tap water was aerated and 

passed through an activated carbon filter to remove all iron and chlorine. 

Ferrous sulphate was then added to yield the desired iron content entering 

the filter and little if any precipitation of hydrated ferric oxide oc

curred above the sand. The filter which had a diameter of 6 in. and sand 

depth of 47 in. was equipped with sampling and piezometer connections at 

11.8 in. intervals. The penetration and precipitation of iron within the 

filter was studied as the run progressed, with variable sand size, iron 
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content and filtration rate. Even deep within the bed only soluble fer

rous iron was present in the filtrate. The precipitated iron was imme

diately removed on the sand and no break through of the precipitated iron 

occurred even at the high rates. The rate limiting reaction was therefore* 

found to be the oxidation of ferrous iron to hydrated ferric oxide floe. 

The natural log cf the effluent iron ccateat was found to be proportional 

to the time of iron contact within the filter which in turn is inversely 

proportional to the filtration rate. High effluent iron content was ob

served at the higher rates. This was due, however, to inadequate time for 

the oxidation reaction to take place. On the basis of the observations, 

an empirical formula was developed for the depth of filter required to 

reduce the iron content in the finished water to 0.1 mg/l for various 

conditions of sand size, raw water iron content, and filtration rate. 

While this work has rather limited application due to the conditions of 

the experiment, it led Eberhardt to a subsequent study of economic con

siderations in rapid sand filtration (22). 

In this article Eberhardt observed that, in their research studies, 

as rates of filtration were increased, greater water production occurred. 

However, due to the conditions of their work, effluent quality decreased 

as the rates increased. He studied the relative economy of pumping costs 

for pressure filters to various high terminal head losses. Disregarding 

the decreased water quality, he observed that pumping costs per unit pro

duction went down as rates were increased. When provision was made in 

the calculations to produce comparable water by using greater sand depth, 

however, he concluded that the economic advantage was at the lower rates. 

The nature of his experimental work, with soluble ferrous iron entering 



www.manaraa.com

19 

the filter is contrary to common American practice and precludes the direct 

application of these observations to practical selection of optimum filtra

tion rates. In addition, these observations were made in a pressure filter 

with high terminal head losses possible. The economics of varieras rates 

on open filters is entirely different since the terminal loss is generally 

fixed at a fairly low value. 

C. Sunuaary of Status of High Este Filtration 

It is evident from the literature cited above that considerable work 

has been done on high rate filtration. The data in some reports indicates 

less water production or no increase in production per run as rates are 

increased (9.10,11,33.37A3»̂ 6,53)» Bead loss vs. time curves in most of 

these studies were linear or nearly linear. The studies indicate that 

acceptable water can be produced at rates up to 5 gpo/sq ft but special 

care must be exercised in pretreatment with coagulation aids during periods 

of weak coagulation. The data in some reports indicates better water pro

duction per run or per ft increase in head loss as rates increased (13,14, 

15,18,19,27,36,51). With one exception (51) bead loss vs. time curves in 

these studies were not linear; head loss increased at a more rapid rate 

as the filter run progressed. 

It is evident that the relative economy of high rate filtration from 

the standpoint of water produced per run has not been fully investigated 

under controlled conditions. Some waters are such that higher rates yield 

deeper penetration and greater production for a given head loss increase. 

Other waters do not demonstrate this improved production. The studies 

reported represent a variety of water characteristics and filter details. 
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Some were pilot scale or laboratory scale studies with good control and 

high terminal head loss; eom® are plant scale studies in which control of 

conditions and terminal head lose are limited by the physical arrangement 

of the plant. Some of the reporta indicate production per run while others 

indicate production per ft of head loss increase, which are not comparable. 

The data thus far available would certainly verify the proposition suggest

ed by Fuller (26) that much higher rates than those which h© studied are 

possible. 

D. Studies of the Functioning of Sand Filters 

1. General 

For approximately thirty years following Fuller's work in 1896-7, 

little information was reported in the literature on studies of rapid sand 

filtration. During this period filters were designed more or less along 

Fuller's recommendations for Louisville, namely, ueing sand with an effec

tive size of 0.35 mm and filtration rates of about 2 gpo/sq. ft. The sand 

filters were frequently Inadequately cleaned during backwaehing and the 

belief was common that the filter would function better with slightly 

dirty sand. This concept was a carryover from the old slow sand filters 

which did not function properly until the ôchmutzdecke11 had been de

veloped. It was not until the late 1920es and the 1930*8 that much at

tention was given to the mechanisms involved In filtration. In this sec

tion, the more noteworthy contributions to filtration theory will be 

briefly enumerated. 

2. The hydraulics of the clean filter bed 

It is well established that flow of water through a filter at rates 
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common to rapid sand, filters is in the laminar or stream line flow rang® 

and obeys Darcy's law for laminar flow through granular material: 

v = KS Eq 1 

Where : 

v = velocity of flow (fpd) 
E - the coefficient of permeability (gpd/oq. ft at unit 

hydraulic gradient) 
S = the slope ratio of the hydraulic gradient. 

This fact has been observed by many workers including Hulbert and 

Feben (4l) who observed that the head loss through clean uniform sand 

filters was proportional to rate of flow and to depth of filter. They 

developed one of the first comprehensive empirical formulas for the flow 

of water through clean sand: 

h = yg»' E»2 
105 d (̂t+20.6) 

Where : 

h 3 loss of head (ft) 
1 = depth of bed (in.) 
q. = rate of filtration (mgad) 
d = $0$ sand sise (mm) 
t = water temperature (°F) 
p = porosity (percent) 

This formula was developed from résulté of tests using a number of glass 

tube filters with uniform sand ranging in size from 0.28 to 1.20 mm. 

Temperatures from 32° to 80° Ï and rates of filtration up to 300 mgad were 

investigated. A new method of measuring the sand porosity was suggested 

for use in this formula (42). Since the formula was developed for uniform 

sands (those between successive sieve separations) it is necessary to make 
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successive applications of the formula to the separations found, in a typ

ical sieve analysis to find the total loee for a given sand bed. 

Filtering clean water through J-lj2 in. ID filters with a madia of 

uniform glass ballotini (beads), Ghosh (28) observed that the head loss 

did not increase linearly with depth, but exhibited decreased head loss 

per unit depth in the deeper lamina. He did not develop positive proof 

as to the cause of this phenomenon, but hypothesized that it might be the 

result of the streaming potential developed across the sand. He presented 

evidence that the phenomenon was not due entirely to stratification, un

equal packing, or to the release of dissolved gases in the lower depths. 

This work would contradict that of Hulbert and Feben who observed head 

loos proportional to depth for uniform sand filters. 

The most rational formulations for the calculation of head loss 

through a clean filter were developed by Fair and Hatch (24,25)» 

h = head loss in depth 1 
Cjj = coefficient of drag = ~ 4- -2 * 0.^4 

R H 
H a Reynolds number d v/y 

v a> Face velocity or velocity of water moving down upon 
the aand bed 

g = acceleration due to gravity 
v = kinematic viscosity 
p = porosity ratio of the filter bed , 
d « characteristic diameter of the sand grains defined as 6 — 

V* a volume of sand particles ^ 
A = surface area of sand particles 

With the exception of the diameter term (d = ̂ ——), the evaluation of 

h 1.067 Cj) v̂  0.178 Cp v̂  A 
Eg. ] 

Where! 
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tha factors in this equation is fairly straight forward. Experimental 

observations which permit evaluation of this term are presented (25). For 

a stratified bed it is necessary to evaluate the diameter term incre

mentally for each sieve sise separation assuming that the particles be

tween adjacent sieves are substantially uniform in size. 

Application of these formulae to the calculation of head loss in a 

partially clogged bed as a filter run progresses is not yet possible. 

Such a calculation will await the development of some universal measure 

of water filtrability which can be related to head loss development. 

3. Observations of filtration action 

The first report of any detailed observations of filtration action 

was made by Baylis (?) in 1926. He observed through a pilot filter with a 

glass side the predominant surface removal. He noted that as the surface 

layer became clogged, small channels would break open to permit sediment 

to pass to a slightly lower depth where the water would fan out in the 

cleaner sand and suspended matter would again be removed. 

Similar observations were reported at about the same time by Tyler, 

et al. (5^). They observed that the principal removal occurred in the 

upper 6 in. of sand. The large head loss development in the layer results 

in negative head first appearing at about 6 in. below the sand surface and 

gradually moving upward and downward from that depth. They suggested that 

larger positive heads above the sand might reduce problems associated with 

negative head. They also concluded that effective sise, surface modulus, 

and specific surface were of about equal value in describing the sand 

characteristics. 

In a later article, Baylis (11) elaborated on his observations noting 
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the upper layer may re®ore practically nothing but the head loss in that 

layer will generally continue to increase. Since the head loss is in

versely proportional to the fourth power of the porosity (equation 3)» 

a minute deposition of solid matter in an already clogged region of the 

bed will result in a significant relative decrease in porosity and in

crease in head loss. It was also observed that the size of the particles 

reaching the lower layers was smaller than those reaching a somewhat 

shallower layer. 

Hudson (34,35) observed that seasonal variations in water quality 

often lead to periods when floe passes the filter at low head loss even 

at normal filtration rates. At such times, which usually occur during the 

winter, the head loss vs. time curves are apt to be linear. He describes 

such periods as weak coagulation periods and the floe as weak floe. He 

also observed that under normal coagulation, the floe did not readily pass 

the filter and describes such floe as strong floe for which head lose 

develops at an increasing rate as the run progresses. Intermediate de

grees of floe strength were also recognized. He suggested (38) that a 

linear head loss vs. time curve may be indicative of potential passage of 

floe through the filter but did not support this hypothesis with evidence. 

He emphasized the need of the consultant to design for the most critical 

seasonal conditions that may be expected. As an empirical measure of the 

floe strength, the "floe strength index" (35) was proposed. 

floe strength index = Eq 4 

Where: 

h le the head lose at the time when floe passage is noted 
through a bed of depth 1 and effective size d. 
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that the suspended material which passed through the surface layer was 

removed primarily at the contact spots of the sand grains. Stein (52) 

also observed that removal was predominately at the contact points of the 

sand in a email filter which he observed with a microscope. He noted that 

the penetrating material was primarily that in the water being filtered at 

the moment and not old material being forced deeper into the bed. This 

latter fact was verified by Stanley (51) using radiotracers. 

Since the mid 1930's there has been a gradual tendency toward the use 

of coarser sands, a tendency supported by several workers (1,2,3.27) 

who observed that coarse sands will yield good filtered water if they are 

of sufficient depth. Coarser sands will permit deeper penetration and a 

heavy surface mat is less likely to form. The deeper penetration results 

in longer runs. Pine sands result in a dense surface mat which is not 

readily removed in washing. Pieces of the compacted mat adhere to the sand 

grains, settle to the bottom during backwashing and become the source of 

mud ball formation. While coarse sands require considerably higher back

wash rates to yield 50 percent expansion, lower expansion may yield better 

cleaning due to greater opportunity for abrasion between the aand grains. 

These studies have led to the adoption of sands with an effective sise of 

approximately 0.60 mm. The 1936 ASCE report (2) recommended sands with a 

top size between 0.60 to 1.00 mm. 

Eliaasen (23) and Tso-Ti Ling (53) using filters equipped with piezo

meter and sampling connections at intervals through the depth of the filter, 

have observed that the burden of filter removal moves progressively down

ward as the filter run progresses. As the upper layers get clogged they 

remove less and less of the applied sediment load. As the run progresses, 
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He later modified the index (36) and renamed it the "filtrability index0. 

Filtrability index for laminar flow^ - Eq 5 

Where: 

q is the rate of filtration and all other nomenclature aa in 
the floe strength index. 

Hudson suggested that turbulence may develop in the clogged portions 

of the "bed towards the end of the filter run and that "breakthrough of floe 

may be associated with the development of turbulence. In accord with this 

hypothesis, he developed an alternate "filtrability index" for turbulent 

flow. 

aâ2hl/2 
Filtrability indes for turbulent flow = —— Eq 6 

Experimental evidence will be presented in a later section to ques

tion this hypothesis concerning the development of turbulence. Since moot 

rapid sand filters continually pass a small amount of turbidity, the use 

and value of the "breakthrough index61 hinge on some arbitrary turbidity 

level considered a breakthrough. 

Hudson urges better control of filtration with a desired turbidity 

level of less than 0.2 units. Ho cautions against unsteady flow to the 

filters, on-off operation, and surges in filtration rates due to the det

rimental effect on effluent water quality (37)» 

Iwas&ki (45) studied in minute detail the penetration of colloidal 

material and bacteria into slow sand filters. Beginning with rational 

differential equations for the time rate of removal of suspended matter in 

2$?ow called the "breakthrough index" (39). 
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a filter lamina, he developed, the necessary empirical constants for the 

use of the equations with three types of particulate matter. 

Stein (52) elaborated on the mathematical theory of Iwasakl and de

veloped equations for the time rate of removal of suspended matter in a 

rapid sand filter. The equations were applied to the actual experimental 

data of Eliassen (23) and gave reasonable agreement with the experimental 

observations. 

*4. Present status of the theory of filtration 

Several mechanisms for the removal of particulate matter in the rapid 

sand filter bed have been proposed, but the experimental evidence support

ing a predominant mechanism is still a subject for argument. Those mech

anisms which have received most attention are straining, sedimentation, 

and electrokinetics. 

The straining mechanism would result in the removal of large particles 

at the surface and smaller particles at the contact points between the sand 

grains. Since only the small unsettleable particles will reach the filter 

of a well designed treatment plant, one might discount surface straining 

as a major mechanism. However, as the surface gets partially clogged with 

the few larger particles remaining in suspension, the openings will be re

duced to strain out smaller and smaller particles. The heavy surface mat 

observed on many filters operated at standard filtration rates testifies 

to the importance of surface straining as one important mechanism of re

moval. The geometry of the crevices at the contact points of the sand 

grains would support the possibility that even the smallest particles could 

be strained out at these crevices if they occupied a flow line close enough 

to the contact point. Hall (29) has mathematically analyzed the removal 
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expected, from such a mechanism and finds the predicted curves of percent 

of accumulated sediment vs. depth for particles from 10 to 25/£ closely 

follow actual curves (2). The observation by Stein (52) that removal vaa 

predominant at the contact points of the filter media would also lend 

support to this interstitial straining mechanism. 

The data which supporte the straining mechanism would detract from 

the second mechanism, sedimentation. Stein (52) discounts this theory due 

to the fact that particles removed had little preference for horizontal 

surfaces as would b® expected if sedimentation were a factor. However, 

an analysis of the void spaces between the sand grains would lead one to 

expect their individual action to be similar to small settling basins. 

Due to the tremendous horizontal sand surface area within th® bed and the 

short vertical settling path, it should be possible to settle a much smaller 

particle in a filter than in an equal sized settling tank. Fair and Geyer 

(25, p. 657) show that a filter one m deep composed of 0.55 mm sand would 

be expected to remove, by settling, particles l/20th of the diameter of 

particles removed in a settling basin with equal hydraulic loading. In 

arriving at this figure, only l/l8th of the total sand grain surface area 

was assumed to be available for sedimentation. One must consider however 

that the hydraulic loading of filters and settling tanks is not equal. 

Settling tanks are commonly designed at 1000 gal/sq ft/day. Filters can 

operate successfully up to at least 5 gpm/sq ft (7200 gal/sq ft/day). An 

average porosity of 45 percent for the filter sand would increase the ef

fective filter loading to 16,000 gal/sq ft/day. Applying this difference 

In hydraulic loading to Fair's example, the filter would then be expected 

to remove particles only l/5th as large as the settling tank. Since 
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filters seem able to remove even the smallest particles, the importance of 

sedimentation would seem minor as suggested by Stein (52). 

If sedimentation is considered unimportant, and if straining is the 

only active mechanism, the effluent water quality would be expected to 

improve continually during the run since surface straining should become 

more effective as the surface becomes clogged. This is contrary to experi

mental observations which generally indicate a slight degradation of water 

quality as the run progresses and in some cases a rather sudden decrease 

in water quality which necessitates termination of the filter run. These 

observations lead one to the conclusion that some additional mechanism Bust 

be active. 

Stein (52) suggested "contact-action" as the principal mechanism of 

removal. He suggested that particles which came in contact with the sand 

or with previously deposited matter within the bed will adhere until as 

the filter becomes clogged, the viscous shear forces gradually increase to 

a magnitude which prevents further deposition, or even tear away already 

deposited matter. He developed equations for removal of material result

ing from contact of particles due to convergence of the stream lines pass

ing through the interstices and found these equations to be in accord with 

experimental observations. 

Stanley (51, p. 6) studied the effect of pH on filtration of iron 

floe and found the lowest rate of penetration at the iso-electric point of 

the floe. He explains the importance of pH on filtration as follows! 

An H ion is a specific counter ion which neutralises hylroxyl 
groups on hydrous ferric oxide floe. This high affinity for the 
floe produces positively charged particles when sufficient H ions 
are present. When particles are broken up in the presence of a 
large number of H ions, they will not coagulate again as readily, 
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because the resulting high positive charge causes an increase in 
the electrokinetic repelling forces. 

This reasoning may also be used in explaining why a large 
percentage of such floe passes through a sand filter. Clean Ottowa 
sand grains have negatively charged surfaces. Thus, it would Been 
that positively charged particles in suspension would be readily 
removed. This is probably true so long as the surface of the 
filter medium remains negatively charged. However, the small 
particles in suspension coat the sand grain surfaces very rapidly, 
producing charge essentially the same r.s that on the floe particles 
in the suspension. The particles would then have the best chance 
of adhering to one of these surfaces if the electrokinetic re
pelling forces were at a minimum. This occurs at pH values close 
to the iao-electric point. Thus, the best coagulating floe would 
also be the best filtering floe. 

Thus it would seem that the removal on contact proposed by Stein was 

probably being aided by the important mechanism of electrokinetic forces 

as suggested by Stanley. Since these forces would be greatest in the 

clean filter and gradually decrease as portions of the bed become clogged 

to a point approaching zero removal, the effluent quality should decrease 

gradually during the run. Thie is in agreement with experimental observa

tion. 

In summary, two mechanisms working cooperatively seem most feasible. 

1. Straining both at the surface and at the interstitial 

crevices within the bed. 

2. Contact adherence of particles coming in close proximity 

to sand or previously deposited floe facilitated by 

electrokinetic forces. 
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III. OBJECTIVES AHD SCOPE 0? THIS STUDY 

The objectives of this study are as follows! 

a. to determine whether there Is an optimum rate of filtration 

for a given water supply and for a given filter, from the 

standpoint of the volume of acceptable water produced per 

filter run. 

b. to establish simple criteria by which an operator can 

determine whether an optimum rate can be expected for his 

particular water quality, and, if so; how the optimum rate 

can be identified. 

c. to explain the factors which result in the presence or 

absence of an optimum rate of filtration on any water 

supply. 

To accomplish the objectives, alternative approaches were available. 

The first would be to operate one filter at various rates in succeeding 

time intervals. The second alternative would be to operate several filters 

each at a different rate simultaneously. In view of the difficulty of 

maintaining a constant filter influent water quality for an extended peri

od, the latter alternative was selected. A pilot plant was constructed 

consisting of a raw water pump, mix tank, high lift pump, constant head 

tank, and three plexiglass filters. Each filter was equipped with a tur

bidimeter and rate of flow controller. The general schematic arrangement 

of the pilot plant is shown in Figure 1. Parallel operation of the three 

identical filters at different rates would permit evaluation of the first 

objective. Three sources of filter influent water were investigated: 
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Figure 1. Schematic arrangement of pilot sand filters and auxiliary 
equipment 
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Baw aerated well water from the Ames municipal wells which con

tains "between 8 and 9 mg/l total iron. One-half mg/l of copper 

we added as copper sulphate and the water irao mixed in a slow 

speed Bis tank to assure complete precipitation of the hydrous 

ferric oxide floe. 

Ames city tap srater to which ferric chloride or ferrous sulphate 

solution was added through a constant head capillary tube feeder 

to yield the desired iron concentration. The mixture was mixed 

in a alow speed mix tank to form the hydrous ferric oxide floe. 

Filter influent water of the Ames municipal water treatment 

plant. This water was diluted with tap water in some filter runs 

to adjust to a desirable turbidity level and to aid in its sta

bilization prior to use in the pilot filters. The Ames municipal 

water treatment plant uses a typical split treatment, lime-soda 

aeh softening process. The treatment steps include aeration, 

chemical addition, mixing, settling, recarbonatlon, sludge addi

tion, mixing, settling, recarbonatlon, filtration, chlorlnatlon, 

flouridation, and metaphosphate stabilization. 
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IV. PILOT PLAHT APPARATUS 

All components of the pilot plant shorn schematically in Figure 1 

were designed to enable operation of the three filters at any desired rate 

between 1 and 10 gpm/sq ft. Each component in the pilot plant is de

scribed in the following paragraphs. 

A. Pcusps and Tanks 

1. Baw water pump to the mixing tank 

A 1-1/2 in,, x l-l/2 in., l/8 hp, 1750 rpm close coupled centrifugal 

pump WEB uaed to pump the water from the aerator, or from the filter in

fluent of the Ames municipal plant, to the mixing tank. 

2. Slow speed mis tank 

A mixing tank 3 ft high and 3.5 ft in diameter equipped with a slow 

speed paddle was csed to provide the necessary detention time to complete 

th® iron precipitation reaction. Allowing 6 in. of freeboard, this 182 

gal tank provided a 30 minuta theoretical detention time at a pumping rate 

of 6 gpa. 

The Blow speed mix tank was also used when filtering the lime-soda 

ash softened water from the Ames municipal plant. Water was pumped to the 

mixing tank from the recarbonatlon tank effluent. Th® mixing time aided 

in completing the recarbonatlon reaction thus providing a more stable water 

to the pilot plant filters. In some filter runs, tap water wae added to 

the Ames filter influent water to regulate turbidity and aid in stabiliza

tion. 
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3» High lift pump to the constant head, tank 

A 3/4 in. z l/2 in., 1/3 hp, 34$0 rpm close coupled centrifugal pump 

was used, to pump water from the slow speed mix tank to the constant head, 

tank. 

4. Constant head tank 

All water to be filtered was pumped to a constant head tank 12 in. in 

diameter by 18 in. deep equipped with a 10 in. overflow weir. The tank 

was located to provide 10 ft of head above the filter sand surface. The 

water flowed by gravity to the three filters from the constant head tank. 

Head on the three filters varied slightly due to the difference in head 

loss from the constant head tank to the filters at different filtration 

rates. The head variation at different rates did not exceed 0.4 ft (4$Q . 

B. Filters and Appurtenances 

1. Pilot sand filters 

Three sand filters shown in Figures 2 and 3 were constructed, of 6 in. 

ID plexiglass tubes l/2 in. thick and 53 in- long. This diameter pro

vided a sand surface area of O.I96 sq ft in each filter. Combination 

piezometer and sampling connections of l/4 in. ID plexiglass tubing were 

installed at close intervals through the sand depth. The inside ends of 

the piezometer connections were 2, 3. or 4 in. from the inner face of the 

filter shell, alternating to prevent two adjacent sampling points from 

lying directly in a vertical line. The inner end of the l/4 in. plastic 

tube was molded, to permit the easy entrance of water but to prevent the 

passage of sand. 

The underdrain system for each filter consisted of 9 In. of graded 
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Figure 2. Pilot sand filter and control equipment 
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Figure 3. Pilot sand filters and bottom of piezometer boards 
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gravel placed over a perforated aluminum cup which in turn was centered 

over the l/2 in. filter effluent and "backwash connection. Thirty in. of 

eand was provided above the gravel. Filter influent water entered ap

proximately 13 in. above the sand surface through a 3/6 in. pipe connec

tion. Backwash water leaves through a 3A in. pipe connection in the top 

flange of the filter. 

Immediately outside the filter, each piezometer connection was pro

vided with a glass BTH. One connection led to a piosometer board and the 

other connection was provided with a rubber tube and screw clamp for sam

pling purposes. 

Th© piezometer boards were 10 ft long and equipped with 9 - 4 ma ID 

glass tubee. The upper ends of the piezometer tubes were connected to a 

manifold header to parait the application of a email constant pressure on 

all tubes. The pressure was exerted by a rubber squeeze bulb at the be

ginning of each run to depress the water level in the tubes to approxi

mately the middle of the board to facilitate reading. 

2. Filter sand 

Filter sand was obtained from the Northern Gravel Company of Muscatine, 

Iowa. Several graded eande were obtained and analyzed using U.S. Standard 

sieves. The size characteristics of the various grades ar. shown in 

Table 6. Sands used in the various experimental runs are referred to by 

the designation in the table. 

3. Flow meters 

Effluent from each filter passed through a variable area glass tube, 

float type, flow meter suitable for water flow measurement from 0.2 to 
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Table 6. Filter sand characteristics 

Sand affective Uniformity 
designation size, coefficient 

urn 

A 0.50 1.46 
B 1.34 1.38 
c 1.96 1.33 
D 1.55 1.89 
E 1.05 I.38 

2.0 gpia^ (Figure 4). The flow meters were calibrated by determining the 

time to fill a two liter volumetric flask. The calibrations gave some

what different results at different times in the experimental work, ap

parently due to the deposition of a small amount of material on the inside 

of the glass tube or the float. The experimental data for the various 

filter runs was evaluated in terras of the actual flow as determined by the 

calibration nearest the time of the particular ran. 

4. Turbidimeters 

Each filter effluent is monitored by a photoelectric turbidimeter 

(Figure 5) which uses a nephelometric method to measure turbidity2. The 

precision and accuracy of these instruments is discussed in a later sec

tion on laboratory techniques. 

5. Bate of flow controllers 

The effluent from each turbidimeter passed into a float operated rate 

of flow controller shown in Figure 6. The controller maintained a constant 

rate of filtration by holding a constant head on a needle valve outlet. 

^•Fischer and Porter "Flowrator". 

^Hach Chemical Company, âmes, Iowa, CE Low Range Turbidimeter. 
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Figure 4. Flow meter 
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Figure 5* Photoelectric turbidimeter 



www.manaraa.com

44b 

TRANSFORMER 

L A M P  

L E N S  

STANDARD 

HEFLECTANC E  

ENTRANCE F  OR 

REFLECTANCE ROD 

TO DRAIN 

PHOTO CELL 

TO oalvanometer. 

PARTICLES OF 

x SUSPENDED MATTER 

REFLECT L IOH T 

<:_PiA£i.TiC_£lfi£. 

WATER SAMPLE 
INLET 



www.manaraa.com

Figure 6. Filter rate of flow controllers 
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The float chamber, constructed of 12 gauge steel plate, was 9 in» z 9 in, 

x 12 in. deep. One-half In. needle valves, 3/4 in. float valves, and 4 

In. diameter copper floats were provided. Piping was arranged to pass 

all or any portion of the filter effluent through the turbidimeter prior 

to dischange to the float chamber. 

The rate of flow controllers functioned remarkably veil. Occasion

ally, the float valve might temporarily stick and, when it suddenly re

leased itself, a surge of high flow rate might pass through the filter. 

When this occurred, some of the previously deposited sediment would be 

flushed through the filter, resulting in a drop in head loss. The further 

results for such a run were invalid and the run was terminated. For

tunately, this rarely occurred. 

As the head loss through the filter increased» during a run the float 

valve would gradually open to maintain a constant filtration rat®. As the 

float valve opened, the head on the needle valve was decreased slightly 

and the rate of filtration would decrease approximately in proportion to 

the square root of the ratio of the head change. To maintain constant 

rate, the needle valve was opened very slightly to compensate for this 

head change. 
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V. EXPERIMENTAL OBSERVATIONS 

A. General 

The Initial phase of the study was directed at the first objective, 

namely; to determine whether there is an optimum rate of filtration from 

the standpoint of the volume of acceptable water produced on a given fil

ter per filter run. When the first objective had been accomplished, ad

ditional runs were conducted with the pilot plant to shed light on the 

secoad and third objectives, namely! how can the operator identify the 

optimum rate and what factors lead to the presence or absence of an 

optimum rate. 

B. Laboratory Techniques 

1. Turbidity 

During the experimental runs using Ames filter Influent water as the 

source of influent water for the pilot filters, the pilot filter effluent 

quality was evaluated on the basis of its turbidity content. Turbidity of 

water is that quality which interferes with the passage of light through 

the water, or which restricts visual depth. It is caused by a wide variety 

of suspended material ranging in size from colloidal to coarse dispersions. 

The accurate determination of this optical property of a water presents 

many problems. The recent development of a new type of photoelectric 

turbidimeter*, which is particularly adapted to low levels of turbidity 

such as those encountered in filter effluent water, was a great help in 

*Hach Chemical Company, Ames, Iowa. CE Low Range Turbidimeter. 
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this research. 

Each filter was equipped with a photoelectric turbidimeter. Each 

turbidimeter has a 4 in. ID plastic tube approximately 4 ft long. The 

water enters tne bottom and overflows through a pipe connection approxi

mately 1 ft from the top. At the top of the tube above the overflow are 

a light source and two lenses. The light source and lens system sends a 

2 in. diameter light beam axially down through the water column. A number 

of selenium photoelectric cells are mounted around the circumference of 

the tube at about mid depth. The interior of the tube is dull black to 

prevent reflection of light from the bottom or sides of the tube. As 

the light beam passes through the water column, light is scattered by the 

turbidity particles due to the Tyndall effect and the scattered light re

ceived by the photoelectric cells results in the generation of a small 

electric uotential which is measured on a highly sensitive lamp and scale 

galvanometer. The intensity of the scattered light is in proportion to 

the surface area of the particles in suspension. A potentiometer in 

parallel with the galvanometer can be adjusted to impress any desired 

portion of the photoelectric cell output through the galvanometer. In 

these experiments, the potentiometer was generally set to yield one mm 

scale deflection of the galvanometer for 0.02 units of turbidity. With 

this potentiometer setting, turbidity was easily read with a fineness of 

0.02 unit. However, it is a well recognized fact that turbidity is a 

difficult quality to measure. Many problems prevent the accurate deter

mination of an absolute turbidity level for any water sample. 

The standard method (50) for determination of turbidity is the 

Jackson candle turbidimeter which can be used only above 25 units of 
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turbidity. Other instruments may "be uoed in place of the Jackson meter, 

but they must be calibrated against the Jackson candle turbidimeter by 

making up a suspension above 25 units turbidity and diluting to the level 

required in the instrument to be uoed. This requirement is the reason 

for inaccuracies in calibration. 

a. Human inconaistancieg are involved in the visual observations 

required with the Jackson candle turbidimeter in preparation of 

initial standards. 

b. The type of suspended matter used in standardizing the instru

ment. The standard method suggests using suspended matter in 

calibration of the sama type that will be observed in subsequent 

use of the instrument. 

c. The possibility that the suspension used in calibration may 

partially dissolve when diluted to less than 1 unit. 

d. The changes in particle size or other characteristics which may 

occur during dilution and handling as a result of natural coagula

tion. 

Further, in the accurate measurement of turbidities less than one 

unit, zero turbidity water must normally be used in preparing the desired 

dilutions for calibration. An instrument such as the Baylis Turbidimeter 

requires an absolute zero turbidity dilution water to be used in prepara

tion of the standards. Any turbidity in the dilution water will result 

in inaccuracy. 

An advantage of the CE meter is that the meter calibration does not 

depend on zero turbidity water for the preparation of the standards. The 

photocell output can be observed for the dilution water and the increase 
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in output can then be observed for any desired levai of added turbidity. 

The photocell output of the meter is essentially zero for zero tur

bidity water. Various methods were used in an attempt to prepare a zero 

turbidity water including low rate sand filtration, recycled diatomacsous 

earth filtration, membrane filtration of distilled water, and recycled 

activated carbon filtration. The last method produced a water which most 

nearly approached zero turbidity. The filter was a perforated copper pipe 

septum wound with felt cloth l/2 in. thick. Activated carbon was the 

filtering medium, and water was recycled through the turbidimeter and the 

filter. The galvanometer soon reached a constant reading equivalent to 

approximately 0.05 units turbidity. This photocell output may be due 

partially to reflected light reaching the photocells within the meter. 

Various other problems involved in low level turbidity monitoring are 

solved with this meter. Some photoelectric turbidimeters measure both 

transmitted light and scattered light. Though this is a desirable method 

of observing the optical properties of medium to high turbidity suspen

sions, the change in transmitted light is insignificant when dealing with 

very low water turbidities. One unit of turbidity reduces transmitted 

light by about one percent, and it is difficult to measure such a small 

difference between two relatively large values accurately. In contrast, 

an increase of from 0.1 to 1.0 unit of turbidity increases the scattered 

light approximately tenfold. Such a change can be measured accurately. 

For this reason, the meter attempts only to measure scattered light. 

The measurement of transmitted light presents some additional prob

lems. Color in water from other causes than turbidity will also reduce 

the intensity of the transmitted beam and will be measured as turbidity. 
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The manner in which the light "bean enters the water may also cause false 

turbidity readings. In some photoelectric turbidimeters, the light beam 

passes through a window into the water, and the scattered and transmitted 

light paas through other windows to the photocells. Submerged windows of 

this type tend to collect air bubbles or to become fouled with slime. This 

foiling will scatter the light of the incoming beam and will give false 

high measurements of scattered light. Fouling will also reduce the in

tensity of the transmitted beam. In this meter, the light beam enters 

directly through the surface of the water which is constantly overflowing 

and is therefore self cleansing. 

The windows in this meter through which the scattered light pass may 

become fouled, and this will result in slightly low readings, but it can

not result in false high readings. The meter is furnished with a glass 

reflectance rod which can be used to check the potentiometer adjustment 

and proper functioning of the meter. The potentiometer adjustment can be 

measured by the galvanometer deflection (in millimeters) caused by the 

light reflected by the reflectance rod. This value will subsequently be 

called the sensitivity. If the sensitivity decreases due to fouling, the 

window can be cleaned, or the potentiometer can be adjusted to increase 

the sensitivity to the desired level. 

The manufacturer of the CE Low Range turbidimeter anticipated a pos

sible correlation between the light reflected by the reflectance rod and 

the light reflected by some standard unit turbidity suspension. This 

relationship will vary for different waters due to the variations in par

ticle characteristic and sise distribution. This relation, therefore, 

muet be observed for the particular suspension in question. 
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During the studies with Ames filter influent water, the relation

ships "between galvanometer scale increase, turbidity, and sensitivity were 

studied. Backwash water from the filter was used in preparing standard 

solutions of 1 unit, 0,5 unit, and 0.25 unit turbidity which were passed 

through the turbidimeters. The sensitivity of the turbidimeters was 

observed. The galvanometer scale increase for the various turbidities was 

noted at several different sensitivities. 

The galvanometer scale reading increased in direct proportion to the 

added turbidity at these low levels, and the galvanometer scale reading 

for a given turbidity increased in direct proportion to the sensitivity. 

Since both turbidity and sensitivity have a linear effect on the galvano

meter reading, the calibration for a particular water may be stated in 

terms of the mm of galvanometer deflection per unit turbidity per mm sen

sitivity. For the Ames filter influent water, this value was found to be 

2.95. 

In view of the foregoing discussion, it can be concluded that abso

lute values of turbidity will remain in question as long ae the Jackson 

candle turbidimeter remains as the standard. When carefully calibrated 

for a particular water, the CH Low Bange turbidimeter will give consistent 

relative results to a fineness of 0.02 units. 

Operational instructions of importance in the use of the turbidi

meters are summarized below: 

a. Clean the photocell windows periodically. Deposition of material 

in the windows will result in reduced sensitivity. 

b. Clean lena system carefully before each experimental filter run. 

c. Check sensitivity at beginning and end of each experimental run; 
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and In long runs, at intervals during the run. Adjust sensi

tivity carefully. 

de Several hours are required for the sensitivity to stabilize 

when the meter power has been turned on after a period of idle

ness. 

e. Limit flow thru the meter to prevent submergence of the outlet 

pipe. Submergence prevents the water surface from being self 

cleaning and may cause the lens system to get wet. 

f. Voltage regulators on the light source power are necessary to 

stabilize sensitivity and thus the turbidity readings. 

2. Iron 

During the experimental filter runs using water containing precipi

tated hydrous ferric oxide particles, the effluent quality was evaluated 

on the basis of the iron content. Since several thousand analyses of to

tal iron were required during the experimental work; a simple, accurate 

method of iron analysis was deaireable. 

During the first year of the research, the 1,10 phenanthroline method 

was selected (50) since it is the standard method for the water supply 

field. This method ia not adequately sensitive when measuring iron at the 

low levels encountered in typical filter effluents, generally less than 

0.3 mg/l. For this reason, in the last year of the research, a new re

agent was used which has greater sensitivity for low levels of iron. The 

properties and use of this reagent, 2,4,6,-1ripyridyl-s-1riazine, commonly 

abbreviated TPTZ, are discussed by Diehl (21). 

1,10-Phenanthroline reacts with the ferrous ion to yield an orange-

red color which obeys Beer's lav and is therefore suited to colorioetrie 
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determination. Three molecules of 1,10-phenanthroline chelate each fer

rous ion. 

TPTZ reacts with the ferrous ion to yield an intense violet color 

which obeys Beer's law and is also suited to colorimetric determination. 

Two molecules of TPTZ are required to chelate each ferrous ion. 

Both reagents are specific only for the soluble ferrous ion. There

fore, the normal method for total iron involves dissolving and reducing 

any precipitated iron with, acid and hydroxyl ammonium chloride before 

analysis. In some cases, heat ia required to complete the solution of 

the precipitated iron. The reagents can be purchased in a patented powder 

form which will dissolve and reduce the iron in a single step without 

heating. To speed v.p the analyses, the patented reagents were used. Fo 

interfering ions were present in the Ames water in sufficient quantity to 

affect the accuracy of the results. Color was observed on either a photo-

electric filter photometer-^ or a photoelectric spectrophotometer . 

In evaluating the first objective, it is necessary to set a standard 

of acceptable water quality. Since the water in question is essentially 

sterile as it is pumped from the wells, a bacterial evaluation would be 

of little value. 

C. Effluent Water Quality Requirements 

^Hach Chemical Company - FerroVer powder 
TeeVer powder. 

^Bach Chemical Company - DR Colorimeter. 

and Loob - Spectronic 20. 
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In those runs where water containing precipitated iron was filtered, 

an iron content in the effluent of greater than 0.3 mg/l was considered 

unsatisfactory sine© this is the standard set by the U.S. Public Health 

Service (48)« 

In those runs where the filter influent water of the Ames municipal 

plant was filtered, the effluent quality was evaluated on the basis of its 

turbidity content. U. S. Public Health Service drinking water standards 

liait turbidity to 10 units; however, many plants strive for a much better 

water quality. Baylis (8) and Babbitt (4, p. 384) state that "turbidity 

greater than about 0.5 unit say be noticeable to the consumer when the 

water is hold in a white enamel container". 

Baylis (8) and Hudson (38,39) have indicated that less than 0.2 unit 

of turbidity is a desireable goal. However, it is doubtful that the tech

niques used in their studies would yield valid results at this level. 

Turbidity in their studies was measured by the Baylis Turbidimeter cali

brated against suspensions observed on the candle turbidimeter and diluted 

to the desired level. Since it is unlikely that they had absolute zero 

turbidity water in making the dilutions, the absolute level of their tur

bidity is subject to question. 

In this study, a maximum level of 0.5  unit of effluent turbidity was 

arbitrarily set as a desireable goal. 

D. Brief Chronology of Experimental Runs 

The first three months of operation of the pilot plant involved som© 

wasted effort as operating techniques were refined to eliminate erroneous 

influences. While many of the early runs have invalid results, important 
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operational lessone were learned. Table 7 summarizes the various rune 

performed. A brief chronological discussion of them follows. 

Sand E^ which is a very coarse sand with an effective sis® of 1.05 

mm was chosen for the initial runs to enable appreciable penetration to 

occur. It was felt that an optimum rate would be observed only if signifi

cant changes in penetration could occur at different rates. 

Runs 1, 2, and 3 are invalid due to disturbances in the rat® of fil

tration which resulted in passage of iron through the filter and decrease 

in head loss. Excessive iron was passed at rates above 2 gpm/sq ft with 

the coarse sand in use. 

Rune k, 5, and 6 reflect efforts to prepare a larger floe particle 

size with ferric chloride and city tap water in the hope that the larger 

floe would not pass through the coarse sand in use. Even though a larger 

floe was obtained, excessive iron waa passed and all three runs are invalid 

for this reason. 

Runs 7 and 8» in which highly turbid water from the aecmd stage mix

ing tank of the Âmes municipal plant was filtered, are invalid due to pas

sage of excessive material through the filter. 

It was evident from runs 1 through 8 that a finer sand would be nec

essary to permit filtration within the desired rates of 1 to 10 gpm/sq. ft 

for which the pilot plant was designed. Sand D with an effective size of 

0.55 mm was therefore installed in all three filters. 

Rons 9 through 15 with the finer sand indicated that acceptable iron 

removal could be accomplished at rates up to 6 gpm/sq ft. However, these 

5See Table 6. 
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Table 7. Summary of experimental runs on pilot plant filters 

Filtration rates6 

Hun Sand'0 
Filter influent water type 

Flit. 
1 

Flit. 
2 

Flit. 
3 

no. 
Sand'0 

Source0 Treatment Additives® 
Flit. 
1 

Flit. 
2 

Flit. 
3 

1 E 1 1,2 2.5 4 9.5 

2 E 1 1,2 1 1 2 4 

3 E 1 2 1 0.6 1 2 

4 E 5 1 3 1 2 3.5 

5 E 5 1 3,5 1 2 3.5 

6 E 5 1 3,4 1 2 3.5 

7 E 2 1 2 

8 E 2 1 1 3 5 

agpm/sq ft. 

^See Table 6. 

^Water sources designated as follows: 
1. Haw Ames city well water 
2. Ames treatment plant, no. 2 mix tank water 
3. Ames filter influent water, 1 well in operation 
4. Ames filter influent water, 2 wells in operation 
5. Amee city tap water. 

^Treatment of source aa follows: 
1. Mixed in alow mix tank 
2. Aerated in tray type aerator 
3. Diluted with tap water to control turbidity and stability. 

®Additives to the source aa follows: 
1. 1 mg/l copper as copper sulphate solution 
2. l/2 mg/l copper as copper sulphate solution 
3.  Ferric chloride to yield 10 mg/l iron content 
4. HaOH solution added to hold pH at 10 
5. "Balco 600" coagulant aid added at 7 mg/l. 
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Table ?. (Continued) 

Bun 
no. 

Sand** 
Filter influent water type Filtration rates* 

Bun 
no. 

Sand** 
Source® Treatment** Additives® 

Flit. 
1 

Flit. 
2 

Flit. 
3 

9 D 1 1,2 1 1 2 3 

10 D 1 1,2 1 3 2 4 

11 D 1 1,2 1 3 2 4 

12 D 1 1,2 1 5 6 4 

13 D 1 1,2 1 6 2 8f 

14 D 1 1,2 1 0.7 3 6 

15 D 1 1,2 1 3 3 3 

16 D 1 1,2 1 0.7 3 
4,5 

6& 

2 

17 B 1 1,2 1 3 3 3 

18 D 3 1 
6 

3 
7 

5 
2 

19 D 4 6 
3 

5 2 

20 D 4 1 6 4 2 

21 D 1 1.2 2 6 

22 D 1 1,2 2 2 8 
6 

4 

23 D 1 1,2 2 6 

6f,l 

4 2 

24 D 4 1,3 1 
4 

6 
3 

2 

25 D 4 1,3 2 3 4 
6 

^Constant pressure operation, rate indicated is the starting rate on 
the clean filter. 

^During and after run 16, the higher rate filters were frequently 
backwashed and operated at more than one rate. This was possible since 
the run length at low rates was considerably longer than at high rates. 
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ruas cannot "be used to evaluate the first objective for a number of rea

sons. Hate disturbances occurred during run 9» Inconsistent results 

during runs 10 through 15 led to the suspicion that the sand was not 

identical in all three filters at the beginning of the runs. 

After refinements in technique, and slight changes in the sand to 

provide uniform head losses through the clean filter bed, several valid 

runs were obtained which permitted evaluation of the first objective (runs 

16,18,19,20,22,23,24, and 25). 

E. Refinements in Operational Technique 

Several operational refinements were found necessary during runs 1 

through 15. The observations and refinements are discussed below. 

1. Incomplete precipitation of iron 

Complete precipitation of the iron did not occur duo to mixing along 

in run 1. To facilitate precipitation, l/Z to 1 mg/l of copper was added 

in the form of copper sulphate solution in all subsequent runs on raw 

aerated water. The copper catalyst consistently gave soluble iron levels 

entering the filter of less than 0.10 mg/l. 

2» Bate disturbances 

Sediment which had been removed in the filter was very sensitive to 

rate changes. Any sudden increase in rate would flush a large amount of 

sediment out of the filter with a resultant decrease in head loss. The 

effluent quality would quickly recover but such rate increases would in

validate the results for a given run. Therefore, it was necessary to 

eliminate, as nearly as possible, all sources of rate change. The pre

cautions taken are discussed below. 
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a. Sample withdrawal To prevent the rate change that would occur 

if a sample were periodically taken from any of the piezometer sampling 

connections, such samples had to be withdrawn continuously through a 0.5 

ma ID capillary tube of sufficient length to provide a sampling rate of 

approximately 5 nl/minute. 

b. Float valve difficulties Float valves on the controller were 

adjusted to give minimum linkage friction to try to prevent the float 

from sticking and suddenly releasing with a resulting rate change. 

c. Air-binding Release of dissolved gases within the filter 

media (air binding) towards the end of a filter run would result in re

duction in available filter area and thus increase the effective filtra

tion rate. Such occurrences were observed to have the same effect as the 

other causes of rate change. It was necessary to terminate the filter 

runs if such air-binding was observed. 

3. Initial start up 

The procedure followed at the beginning of a filter run was found to 

be important in obtaining uniform conditions. It was necessary to adjust 

the rate of flow controller to the desired rates prior to commencement of 

the actual run. Several operational procedures were attempted. The method 

finally selected consisted of opening the backwash supply valve slightly 

so that water flowed through the turbidimeter and controller and a small 

amount of excess water flowed upward through the filter and out the back

wash outlet. The controller was then set at the desired rate while pass

ing the backwash water. Using this procedure the clean filter was not 

affected during the time that was required for adjustment of the rate of 

flow controller. When the rates were properly adjusted on each filter, 
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th© run was commenced sirmiltanooualy on all three filters. 

k. Backwash 

It was observed dv.rlng runs 9 to 15 that the manner used in closing 

the backwash valve affected the porosity of the sand and the resulting 

head loss development In a subsequent run. In all subsequent runs, the 

backwash needle valve was turned off l/6 revolution at a time. The sand 

was permitted to reach equilibrium before the valve was closed further. 

When this precaution was practiced, it was noted that some difference 

in sand depth was present in the three filters following backwash!ng. 

City tap water was filtered to observe the loss of head through the three 

clean filters at the same rate. Filter 1 had considerably more loss in 

the upper layers than the other two filters. Portions of sand were re

moved from the desired layers through the top piezometer connection while 

backwashing the filter. After several trials at sand adjustment, the clean 

bed head loss was found to be nearly identical in all filters at the sam® 

rate. Filter 1 had somewhat smaller head loss in the deeper layers but 

this had little affect on the head loss development since most removal 

takes place in the upper sand layers. 

All three filters were held at the same rate during run 17 to check 

the comparability of the head loss development. The total head loss vs. 

volume of filtrate curve for the run is shown in Figure 7. It is evident 

that the sands are nearly identical in hydraulic characteristics. 

The plotting of total head loss vs. filtrate volume as in Figure 7 is 

one of many such plots presented in this paper. Thus, some explanation of 

the units used may aid in proper interpretation of the curves. 

The ordinate, total head loss, represents the total drop in pressure 
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Figure 7» Run 17, total head loss vs. filtrate volume 

All filters were operated at 3 gpm/sq. ft for the 
purpose of comparing aand characteristics. 
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(ft of water) from the top piezometer tube above ths sand to the bottom 

plesometer tube in the gravel layer, including the clean bed head loss. 

The head loss is given at the actual water temperature of the filter run 

as noted in the tabulations of filter influent water quality data. Ho 

attempt was made to correct for viscosity changes to any standard tempera

ture since temperature changea result in other more important head loea 

influences which cannot be evaluated. Thus, to correct for one variable 

and not for the others might tend to obscure the truo importance of tem

perature change on head loss development. The temperature change during 

any single filter run never exceeded 5° F, and was generally leas than 

3° P. 

The abaicca, filtrate volume, is expressed in the volume unit, gpm-hr. 

This volume unit was selected since it is readily determined as the product 

of the experimental observations made, rate (gpm) and time (hr). This 

unit of volume can also readily be converted to run length (hr) or to vol

ume expressed in gal or gal per sq ft of filter area. One gpm-hr is equal 

to 60 gal. Volume (gpm-hr) divided by rate (gpm) will yield the corre

sponding run length (hr) to produce the indicated volume. Since the sand 

filter area in the pilot filters is 0.196 sq ft, it is a simple matter to 

convert to volume/aq ft if so desired. Consider a simple example with a 

given filtration rate of 4 gpm/sq ft and a filtrate volume of 10 gpm-hr. 

This is equivalent to a volume of (10 gpm-hr)(60 min/hr) = 600 gal. The 

filtration rate Is (4 gpm/sq ft)(0.196 sq ft) = 0.784 gpm. The run length 

to produce the Indicated volume is (10 gpm-hr)/(0.784 gpm) = 12.8 hr. 
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F. Experimental Rung without a Pronounced Optimum Bate 

After the various refinements in technique had been developed to 

eliminate erroneous influences, it was possible to make a series of valid 

experimental runs to evaluate the first objective of this study, namely; 

is there an optimum rate of filtration from the standpoint of maximum 

volume of acceptable water produced per filter run. 

When filtering water containing precipitated hydrous ferric oxide 

particles, no pronounced optimum rate was apparent. Figures 8, 9. and 10 

for run 16, 22, and 23 are typical total head loss vs. volume of filtrate 

curves for this type of filter influent water. Filter influent water in 

runs 16, 22 and 23 had the following average characteristics: 

Total Iron: 7-9 mg/l 

Ferrous Iron: 0.00-0.07 mg/l 

Temperature: 57-58° F Bun 16 & 23 
57-62° F Bun 22 

pH: 7.5 to 7.7 

Certain general characteristics are evident in Figures 8, 9» and 10. 

The curves are nearly linear, particularly at the higher filtration rates. 

The curves tend to be parallel. No pronounced optimum rate is present 

with nearly linear curves and the lowest filtration rate will generally 

produce the largest volume of water to a given terminal head loss. An 

exception to this is the very slight optimum obtained at 3 gpm/sq ft in 

run 16. 

Effluent water quality at a terminal loss of 6 ft was acceptable ex

cept at rates of 6 gpm/sq ft or above. Effluent water quality was the 

poorest near the beginning of each filter run, reaching a peak in tur-
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Figure 8. Bun 16, total head loss vs. filtrate volume 

Typical filter run which shows no strong optimum 
rate tendency. Filtering water containing pre
cipitated hydrous ferric oxide. Curve for 6 
gpm/sq ft not shown due to erratic initial behavior. 
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Figure 9. Ron 22, total head loss vs. filtrate volume 

Typical filter run which shows no optimum rate 
tendency. Filtering water containing precipitated 
hydrous ferric oxide. Temporary drop in head loss 
at 2 gpm/sq ft resulted when run was recommenced 
after 1 day plant shut down. 
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Figure 10. Run 23, total head loss va. filtrate volume 

Typical filter run which shows no optimum rate 
tendency. Filtering water containing precipi
tated hydrous ferric oxide. 

Uncontrolled ran started at 6 gpm/sq ft and per
mitted to decline in rate as the head lose in
creased. 

Curve for 1 gpm/sq ft not shown due to insuffi
cient run length. 
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bidity or iron content at approximately the theoretical tine required to 

displace the water from the filter and the turbidimeter, This is in agree

ment with the results of Tso-Ti Ling (53)• The effluent water quality 

then quickly improved to some minimum level of iron content. At the lower 

rates of filtration, this level was maintained throughout the filter run. 

At the higher filtration rates, the effluent quality might gradually de

grade during the filter run. Figure 11 demonstrates the typical initial 

improvement in effluent iron content at the various filtration rates in 

run 23» Figure 12 shows typical effluent iron content as observed in run 

23 following the initial improvement period. 

From these figures and Table 8, several observations concerning ef

fluent quality can be made. Effluent water quality decreases slightly as 

filtration rates are increased. However, even at very low rates, some 

iron passes through the filter. Apparently some portion of the particles 

are of such size or charge characteristic that they cannot be removed by 

filtration even at unusually low rates. 

The importance of iron passage during the initial improvement period 

on average water quality increases as the rate increases. However, the 

effect of the initial improvement period on average water quality is not 

excessive even at the highest rate of 6 gpm/sq ft. 

Even though the full filter bed is apparently active in filtration as 

evidenced by the presence of effluent iron at all rates, effluent quality 

does not necessarily degrade as the filter run progresses. Only at 6 

gpm/sq ft was gradual effluent degradation apparent in run 23. 
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Figure 11. Sun 23» initial effluent improvement 

Effluent iron content vs. the time after 
commencement of the filter run. 

Data for uncontrolled, run and 1 gpm/sq. ft 
run not observed. 
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Figure 12. Run 23, effluent iron content vs. filtrate volume 

Constant pressure run started at 6 gpm/sq ft and per
mitted to decline In rate as the head lose increased. 
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Table 8. Summary of effluent iron content, run 23 

Filtration 
rat® 

(gpm/sq ft) 

Minimum 
effluent iron6, 

(mg/l) 

Initial ^ 
iron passed 
(mg/eq ft) 

Average increase 
effluent ironc 

(mg/l) 

1 0.08 25 0.001 

2 0.09 97 0.005 

4 0.18 123 0.007 

6 0.28 581 0.031 

aLowest level of iron content at any time during the filter run. 

^The total mg/sq ft of effluent iron passed above a level of 0=30 
mg/l during the initial improvement period. 

cAverage increase in effluent iron due to the iron passage during the 
initial Improvement. 

G. Experimental Huns with a Pronounced Optimum Hate 

When filtering the filter influent water of the Ames municipal lime-

soda ash softening plant, a pronounced tendency for greater production per 

filter run was apparent as filtration rates were increased. In some fil

ter runs, the production reached an optimum at some medium filtration rate, 

and decreased at higher filtration rates. Figures 13, 14, 15, and lb for 

runs 18, 19, 24, and 25 respectively are typical total head loss vs. volume 

of filtrate curves for this type of filter influent water. 

The average influent water quality during these filter rung is de

scribed in Table 9» 

Certain general characteristics are apparent in Figures 13, 14, 15, 

and 16. At the lower rates of filtration, the head loss increases at an 
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Figure 13. Son 18, total head loss vs. filtrate volume 

Filtering Ames filter influent water. Plant 
operating one well at 1100 gpm. 
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Figure 14. Ran 19, total head loss va. filtrate volume 

Filtering Ames filter influent water. Plant 
operating two well a at a total of 1400 gpm. 
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Figure 15. Bun 24, total head loea vs. filtrate volume 

Filtering Ames filter influent water diluted with 
an equal amount of tap water to regulate turbidity 
and stability. Plant operating with two wells at 
a total rate of 1650 gpm. 
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Figure 16. Run 25 « total head loss vs.  filtrate volume 

Filtering Ames filter influent water diluted with 
tap water to regulate turbidity and stability. 
Plant operating two well8 at a total rate of 1650 
gpm. 
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Table 9» Average filter influent quality in runs 18, 19, 24 and 25 

Run 
no. 

Temp. 
op 

Total 
hardness 

mg/l 

Alkalinity^ 
Turbidi tyc 

units 

Stability® 
og/l 
drop in 
hardness 

Run 
no. 

Temp. 
op 

Total 
hardness 

mg/l 
(co3r 
mg/l 

(HC03)~ 
mg/l 

PH 
Turbidi tyc 

units 

Stability® 
og/l 
drop in 
hardness 

Comments 

18 56-58 83 28 24 9.2 5 Unstable 
9 

Plant operating 
one well at 1100 
gpm 

19 56-57 82-89 26 25 9.3 9 Unstable 
14 

Plant operating 
two wella at 
1400 gpm 

24 59-63 79-85 22 15 9.2 7 Stable 
0 

Plant operating 
two wells at 
I65O gpm. In
fluent diluted 
with tap water 

25 61-63 83-89 20 21 9.2 6 Stable 
0 

Same as run 24 

AAE indicated by drop in alkalinity and hardness through the dirty filter, mg/l ae CaCO^• 

^Expressed as CaCO^. 

CAB measured with Hellige turbidimeter. 

^Diluted with tap water to control turbidity and stability. 
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increasing rate as the run progresses. At higher filtration rates, this 

tendency is reduced. The curves may approach linearity at high filtra

tion rates as in Figure 1$. In Figures 13 and 15, beyond the rate at 

which the curves most nearly become linear, higher rates resulted in head 

loss curves which were nearly parallel. The optimum rate, where maximum 

production to a given head loss will occur, is the lowest rate where the 

head loss development approaches linearity. 

Effluent turbidity, Table 10, behaved in a manner similar to the ef

fluent iron content described in the previous section. At the beginning 

of a filter run, there was a brief period of high turbidity, the peak oc-

curing at approximately the theoretical displacement time of the filter 

and turbidimeter. The turbidity then dropped quickly to some minimum 

value. At the lower rates, this value remained nearly constant during the 

filter run. At the medium and higher rates of filtration, the effluent 

turbidity increased gradually as the run progressed. 

Effluent turbidity was not always satisfactory at the higher filtra

tion rates. Therefore, the optimum rate from the standpoint of production 

may not be a feasible rate due to unacceptable water quality. Table 11 is 

a comparison of relative production to a 5 ft terminal total head loss 

(including initial clean bed head loss) in runs 18, 19, 24, and 25« 

Study of Tables 10 and 11 permits the following observations. When 

filtering a fairly high quality influent water ae is produced with one 

well operating at ths Ames municipal plant (run 18), the optimum filtra

tion rate lies between 3 and 5 gpm/sq ft. Expected production per run 

will be over twice the production at the standard rate of 2 gpm/sq ft. 

Bates in excess of 5 gpm/sq ft result in reduced production and water 
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Table 10. Effluent water turbidity in runs 18, 19, 24 and 25 

Run Filtration rate (gpm/sq ft) 

no. 
1 2 3 4 5 6 7 

I8a Initial turbidity^ 0.2 0.3 0.3 0.5 0.3 0.6 

Final turbidity® 0.2 0.3 0.3 0.7 0.3 0.6 

19s Initial turbidity 0.4 0.4 0.7 0.5 

Final turbiuxty 0.5 0.7 0.9 1.7 

24 Initial turbidity 0.14 0.16 0.16 0.36 0.50 

Final turbidity 0.14 0.21 O.34 1.16 1.20 

25 Initial turbidity 0.13 0.16 0.22 0.37 

Final turbidity 0.32 0.46 0.70 1.04 

aTurbidimeters were not completely calibrated until after runs 18 
and 19. Therefore, these turbidity values are less reliable than tur
bidity values in later runs. 

^After initial improvement period. 

cAt a terminal head loss of 5 to 6 ft. 

quality. 

Bun 24 and 25 are similar in some respects to run 18. In these runs 

a stable water of moderate turbidity was filtered. The optimum rate from 

a production standpoint was 4 gpm/sq ft, where 152 and 121 percent of stan

dard rate production was obtained, respectively, in run 24 and 25. The 

terminal turbidity at the optimum rate was above the acceptable level of 

0.5 unit, therefore, the dosireable operating rate would be between 3 and 

4 gpm/sq ft. 

When filtering a more unstable, and more highly turbid influent water, 
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Table 11. Relative water production0 in run a 18, 19, 24 and 25 

Bun Filtration rate (gpm/sq ft) 

no. 
1 2 3 4 5 6 7 

18 0.80 1.00 1.93 2.65 2.32 2.07 

19 1.00 1.42 1.47 1.84 

24 0.60b 1.00 1.23* 1.52 1.40 

25 1.00 1.03 1,21 1.21 

®To a terminal total head loss of 5 ft, with the production at 2 
gpm/sq ft considered unity. 

^Estimated by extrapolation. 

aa is produced when the Ames municipal plant operates more than one well, 

the optimum rate had not been reached even at 6 gpm/sq ft. Production in

creased steadily as the filtration rate Increased. However, terminal water 

quality was not acceptable, even at the 3 gpm/sq ft rate. Therefore, with 

this type of water, the filtration rate should be governed by the accept

able water quality and established at between 2 and 3 gpm/aq ft. 

It is evident that the optimum tendency is more pronounced in runs 18 

and 19, in which an unatable water ia being filtered, than in runs 24 and 

25 in which the influent water is stable. The instability of the water 

results in precipitation of calcium carbonate in the filter bed. The un

stable calcium carbonate is catalyzed by the calcium carbonate already re

moved in the filter. The amount of after-precipitation is practically zero 

on the clean sand at the beginning of a filter run, but soon reaches an 

equilibrium value which is then constant throughout the filter run. 
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After-precipitation in the bed is a significant load on the filter aa 

evidenced by the lower production in runs 18 and 19 (Figures 13 and 14) 

than in runs 24 and 25 (Figures 15 and 16). 
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VI. REASONS FOR AB OPTIMUM RATE TENDENCY 

A. General 

The foregoing sections indicate that the two types of water being 

filtered contained particles which were distinctly different from the 

standpoint of head loss development. The water which contained hydrous 

ferric oxide particles caused nearly linear head loss development at all 

rates of filtration. The filter influent water of the Ames municipal 

treatment plant, which contained principally calcium carbonate particles, 

caused head loss to go up at an increasing rate as the run progressed. 

This tendency was most pronounced at lower rates. 

With a typical linear head loss development, increased filtration 

rates result in reduced water production to a given terminal head loss. 

With a typical increasing rate of head logs development, higher rates re

sult in greater water production to a given terminal head loss. In the 

latter ca.se, an optimum rate may be reached as the head loss development 

curve approaches linearity and further rate increases will result in re

duced production. 

What are the basic reasons behind these two characteristic manners of 

head loss development? This chapter will try to answer this question. 

B. Hydraulic Conditions Existing in a Dirty Filter 

To evaluate the reasons which may cause an optimum rate tendency, we 

must first study the hydraulic conditions which exist in a filter bed as 

it becomes filled with sediment. 

As previously mentioned, in Chapter II (p. 20), the observation of 
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laminar flow in a clean aand filter has been mad© by a number of investi

gators. This observation has also been duplicated in this research at all 

rates of filtration studied. Tha characteristic of flow through a dirty 

filter, however, has not been reported. 

Hudson (36) has suggested that the excessive passage of material 

through the filter may be associated with the development of turbulent 

flow, and he developed a 5If iltrability index" for turbulent flow condi

tions (eq. 6, p. 26). He did not present valid experimental proof of the 

existence of turbulent flow. 

According to Darcy's law for laminar flow through porous media (eq. 1, 

p. 21), head loss is directly proportional to the rate of flow. Thus, the 

observation of this proportionality in a dirty filter would support the 

presence of laminar flow conditions. On several occasions, the change in 

head loss with flow rate was observed at the end of a filter run when a 

filter was quite dirty. The head loss at various depths was observed as 

the rate of filtration was progressively reduced from the rate during the 

run to lower rates. Figures 17, 18 and 19 are examples of the typical 

curves for these observations. These figures show almost a linear rela

tion of head loss to filtration rate for the full bed and for the upper 

layers where turbulence might be expected to develop due to the high de

gree of clogging. Figure 1? represents a typical run on water containing 

precipitated hydrous ferric oxide. Figures 18 and 19 represent a typical 

run on Ames filter influent water. 

The curves of Figures 1? and 18 are slightly concave downward. Pres

ence of turbulence would have had the opposite effect, since in turbulent 

flow, the head loss is proportional to approximately the second power of 
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Figure 1?. Bun 23, demonstration of laminar flow in a dirty filter 

Following a run at 4 gpm/sq ft, filtering water containing 
hydrous ferric oxide. 
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Figure 18. Run 24, domonatration of laminar flow in a dirty filter 

Following a run at 4 gpm/sq ft, filtering Ames filter 
influent water. 
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Figure 19. Bun 24, demonstration of laminar flow in a dirty filter 

Following a run at 2 gpm/sq ft, filtering Ames filter influent 
water. 
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the flow rate ae shown in the following general equation: 

Hf = r qn Eq 7 

Were! 

= Head loos due to friction 
r =s Beaiatance coefficient 
Q, = Flow rate, volume per unit time 
n - Exponent, approximately 2 according to most turbulent 

flow equations. 

The unexpected concave downward tendency observed in Figures 17 and 18 

must, therefore, be due to some increase in permeability as rates are de

creased. The permeability increase is due to reduction of the compressive 

forces exerted by the hydraulic gradient which are reduced as the flow 

rate is decreased. The curvature is most pronounced in the upper layers 

and absent in the lower layers, supporting this hypothesis. 

Figure 19 for run 24 shows nearly a linear relation between head loss 

and rate of filtration. These data were collected following a run on Ames 

filter influent water at 2 gpm/sq ft. The curves for head loss through 

the full bed and the top l-l/8 in. layer are slightly concave upward. 

Turbulence would be most apt to develop in a run of this type at low rates 

with a strong tendency towards surface removal. If turbulence was present, 

it should be present in the top layers. The curve for the top layer is 

far from the exponential type curve experienced with turbulent flow. 

It can be concluded that laminar flow conditions existed throughout 

all filter runs, in all layers of the filter, for all waters and for all 

filtration rates covered by this study. 
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C. Utilization of Filter Voids at Various Bates 

Head loss observations were made on all piezometer connections at two 

hour intervals during each filter run. The following observations are the 

result of study of these head loss data. 

At the beginning of a filter run, most of the sediment is removed in 

the upper layers of the filter. As the run progresses, the upper layers 

get filled with sediment and the burden of removal is carried to progres

sively deeper layers of the filter. This observations is particularly true 

at low to standard filtration rates and supports similar observations made 

by Eliassen (23). 

A larger segment of the filter depth plays a significant role in sedi

ment removal at high filtration rates thah at low filtration rates. This 

results in better utilization of the sand bed and may be one reason for the 

presence of an optimum rate tendency. It view of this possibility, a study 

was made of the relative utilisation of the void spaces in the sand at 

different rates and with different influent waters. 

The existance of laminar flow conditions throughout the filter runs 

makes it possible to calculate the relative utilization of the voids within 

the sand. By Darcy's law for laminar flow: 

v = KS Eq 1 (p. 21) 

Where: 

v = Velocity of flow 
S = Hydraulic gradient ratio 
K = Constant, coefficient of permeability. 

And since: 

Q = Av Eq 8 



www.manaraa.com

102 

Where : 

Q, = Volume of flow per unit time 
A = Area of flow 
v = Velocity of flow. 

Combining equations 1 and 8: 

| = KS Eq 9 

The area available for flow per unit area of the filter at any in

stant, would be proportional to the porosity at that instant. 

A = A*p Eq 10 

Where ! 

p is porosity of the sand at any time. 
A1 is horizontal area of the filter. 

Combining equations 9 and 10: 

Q, 

KA'p 
Eq 11 

Equation 11 indicates that the hydraulic gradient is inversely pro

portional to the porosity. If and p^ designate initial values and 5n 

and pn designate values at any time "n", then for constant rate filtration. 

sn _ Pi 

Si 
Eq 12 

Equation 12 is illustrated graphically in Figure 20. 

It is evident from Figure 20 that slight increases in head loss rep

resent utilization of relatively large amounts of storage within the filter. 

As the head loss or hydraulic gradient ratio increases, the corresponding 

returns in the form of material stored diminish rapidly. For example, a 

fifty fold increase in head loss oceuring only in the top 2 in. layer 
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Figure 20. Relation of hydraulic gradient to porosity 

Sn/s^ = ratio of head loss at any time "n" to the 
initial head loss. 
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would represent 98 percent utilisation of the voids in that layer. On the 

other hand, the same total increase in head loss distributed over a 20 in. 

layer of uniform sand would represent 80 percent utilization of the voids 

in the 20 in. layer. The tremendous advantage of increased penetration is 

therefore evident. 

Calculation of the void utilization in runs 16 and 18 illustrates the 

difference between a run with no optimum tendency and a run with a pro

nounced optimum tendency. Table 12a gives the percent utilization cf 

voids to a 5 ft head loss. It is also possible to determine the depth of 

stored material in eacn layer in a similar manner. If an initial porosity 

of 40 percent is assumed, which is a fairly typical value for sand, a 1 in. 

layer of sand would have an equivalent void layer of 0.4 in. If these 

voids are 75 percent utilized, the depth of stored material would be 0.3 

in. Table 12 b gives depths of stored material calculated in this manner 

for runs 16 and 18 for the void utilizations of table 12a. 

Study of table 12b reveals a striking difference in the results from 

the two filter runs. Run 18, which had a strong optimum rate at 5 gpm/sq 

ft, shows a similar optimum in the amount of material stored within the 

bed. The predominance of surface removal is evident at the lower rates. 

Filter bed utilization increases as the rate increases, and it is apparent 

that the full bed contributed significantly to the storage of material at 

5, 6, and 7 gpm/sq ft. The decreased storage obtained at 6 and 7 gpm/sq 

ft is the result of reduced time of operation due to higher initial head 

losses. 

Run 16, in which no strong optimum rate was apparent, shows a similar 

lack of optimum in the amount of material stored. Some increased utiliza-
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Table 12a. Percent void utilization in a dirty filter bed0. 

Rate 
gpm/eq ft 

Filter lamina (in. from surface) Rate 
gpm/eq ft 

0-2 2-4 4-6 6-9 9-15 15-21 21-27 

Ran No. 16 (No optimum rate evident) 

0.7 99.5 98 88 75 38 0 0 

2 97 96 92 83 38 0 0 

3 95 90 86 75 50 0 0 

4 90 86 77 64 41 17 0 

5 89 84 71 67 40 17 0 

6 88 80 52 82 47 22 8 

Run No. 18 (Strong optimum rate evident) 

1 99.1 38 0 0 0 0 0 

2 98 50 17 17 0 0 0 

3 96 75 31 20 0 0 0 

5 93 71 50 22 17 5 9 

6 92 75 50 23 14 5 5 

7 86 55 33 18 8 7 5 

sAt a terminal head loss of 5 ft. 
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Table 12b. Depth of stored material in a dirty filter bed (inches)** 

Bate Filter lamina (in. from surface) Water 

gpm/sq ft Q_2 2-4 4-6 6-9 9-15 15-21 21-27 (J^to) 

Run No. 16 (Ho optimum rate ©vident) 

0.7 .79 

GO C<
-

.70 .90 .91 0 0 4.08 13.2 

2 .77 .76 .74 1.01 .91 0 0 4.19 14.0 

3 .75 .72 .69 .90 1.20 0 0 4.26 15.0 

4 .72 .69 .62 
00 

.96 .41 0 4.18 11.0 

5 .72 .67 .49 .80 .96 .41 0 4.05 10.8 

6 .70 .64 .42 1.00 1.17 .53 .19 4.65 11.9 

Run No. 18 (Strong optimum rate evident) 

1 .79 .30 0 0 0 0 0 1.09 7.5 

2 

CO 

.40 .13 .20 0 0 0 1.51 9.1 

3 .76 . 60 .25 .24 0 0 0 1.85 17.7 

5 .74 • 57 .40 .26 .43 .12 .24 2.76 24.5 

6 .73 .60 .40 .26 .33 .12 .12 2.56 21.5 

7 .69 .43 .27 .23 .19 .17 .12 2.10 18.7 

aAt a terminal head loss of 5 ft, assuming 40 percent initial 
porosity. 
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tion of the lower portion of the bed is evident at higher rates. However, 

compared to run 18, this run without an optimum rate tendency is charac

terised by more uniform utilization of the bed at all rates. It is in

teresting to note the much greater storage at all rates than in run 18. 

The optimum tendency in run 18 can be attributed, therefore, to a 

predominant surface removal with lack of penetration at the lower rates. 

This lack of penetration results in poor utilization of the filter bed and 

low production. In the runs without an optimum rate tendency, consider

able penetration occurs at all rates, resulting in good utilization of the 

bed and good production even at low rates. 

D. The Role of Surface Removal with an Optimum Hate 

1. General 

As suggested in the previous section, an optimum rate tendency is the 

result of strong surface removal and the lack of penetration of suspended 

matter at low filtration rates. However, increased penetration was ob

served at higher rates regardless of the presence or absence of an optimum 

rat® tendency. Therefore, deeper penetration cannot be the only factor 

leading to the two characteristically different types of head loss devel

opment . Some other important factor must be responsible for the increas

ing rate of head loss development associated with the presence of an opti

mum rate tendency. 

2 ,  Comparison of surface and subsurface head loss development 

A study of the head loss development in the top layer of sand and in 

the remaining depth of the filter bed permits some pertinent conclusions. 

In the case of water containing hydrous ferric oxide particles, the head 
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loss in the top 1 in. layer developed in nearly a linear maimer as did the 

head loss in the entire bed. Figure 21 is a typical plot of the head loss 

in the top 1 in. layer for run 23. Figure 10 shows the typical linear head 

loss development for the entire filter bed for the same run. 

On the other hand, when filtering Ames filter influent water, the loss 

in the top layer was almost entirely responsible for the typical increasing 

rate of head loss development. This is illustrated for run 2k by the head 

lose development curves for the top 1 in. of the bed shown in Figure 22 

and for the remainder of the filter bed shown in Figure 23. It can be 

observed from Figure 23 that the head loss exclusive of the surface layer 

develops in much the same manner as with the water containing hydrous fer

ric oxide precipitate. The curves at different rates are nearly linear and 

parallel. The slight upward curvature evident in Figure 23 is probably 

due to increased load received by this portion of the filter bed as the 

surface layer gradually becomes so dirty that it removes a smaller and 

smaller portion of the applied load. Figure 22, for the top 1 in. layer, 

shows the typical increasing rate of head loss development at lower fil

tration rates, with a diminishing of this tendency es rates are increased. 

It is apparent from these typical figures, that the surface layer ia 

responsible for the different types of head loss development which result 

in the presence or absence of an optimum rate tendency. 

3. Surface filtration observations by other investigators 

Chemical engineers have observed typical exponential head loss de

velopment when filtering various types of compressible precipitates on 

cloth filters. Such filtration might be described as cake filtration 

since the deposited precipitate, or cake, acts as the filtering media ex-
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Figure 21. Run 23, head loss in the top 1 in. layer vs. filtrate volume 

Filtering water containing precipitated hydrous ferric oxide 
particles. 

Curves for uncontrolled run and 1 gpm/sq ft run not shown. 
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Figure 22. Run 24, head loss in the top 1 in. layer vs. filtrate volume 

Filtering Ames filter influent water diluted with tap water to 
control stability and turbidity. 
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Figure 23. Run 24, head loss excluding top 1 in. layer vs. filtrate volume 

Filtering Amea filter influent water diluted with tap water to 
control stability and turbidity. 
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cept for a abort period at the beginning of the filter run. Equations 

have been developed by Ruth (49) for both constant pressure and constant 

rate cake filtration. Neglecting the head loss in the filter cloth, hia 

equation for head loss development during constant rate filtration is: 

P. ( âïY6 *13 
A gc(l-Ew) \ i 6 /  

Where! 

V = Volume of filtrate (cu ft) 
0 = Time (hr) 
P = Pressure difference across the cake (lb/sq ft) 
A = Area of the filter cake normal to direction of fluid flow 

(aq ft) 
p - Density of filtrate (# mass/cu ft) 
w - Weight fraction of solids in slurry 
iJ = Viscosity of fluid (# mass/ft hr) 
01 a, Specific cake resistance 
m = weight ratio of wet cake to dry washed cake 
gc = dimensional constant, 4.1?xl0® (ft lb mass/lb force hr^). 

For a given slurry, ©11 items in equation 13 are constant except P,0 , 

dV 
Tj-g , and oC . Combining the various constants, equation 13 may be simpli

fied as follows for constant rate filtration. 

P = E °<(H)2̂  Eq 14 

The specific cake resistance (°< ) has been found to bo pressure de

pendent for cakes that exhibit some compressibility. In the usual range 

of pressures in industrial cake filtration, the relation between c*C and 

P has been expressed as follows (4?, p. 965): 

Where: 

cC = <*-'P8 Eq 15 
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I 
<*- = A constant determined largely by the s ize  of the particles 

forming the cake. 
0 = Cake compressibility. 

The cake compressibility (s) varies from 0 for granular incompressible 

cakee to 1.0 for highly compressible cakes. For most industrial slurries, 

s lies between 0.1 and 0.8. Combining equations 14 and 15 for an incom

pressible cake yields! 

P = K oL* © Eq 16 

Equation 16 indicates a linear development of pressure during the filter 

run. Combining equations 14 and 15 for a partially compressible cake 

yields: 

P = K C/ "pB ^||j 6 Eq 1? 

P = [K ^ 6 ] i-s Eq 18 

For values of s between 0 and 1.0, equation 18 indicates an exponential 

development of pressure during the filter run. 

Baumann (6) has observed the strongly increasing head loss curves 

when filtering iron caogulated water through diatomaceous earth filters 

without the aid of body feed. In these experiments with the fins precoat 

layer acting as the only filtering media, surface straining was the pre

dominant mechanism of removal. When the surface layer became clogged, 

the head loss increased at a more and more rapid rate. Figure 24 is a 

typical plot of data from Baumann1 s studies of the effect of filtration 

rate on filtrate volume without the use of body feed. Figure 24 illus

trates exponential head loss development at all filtration rates, and, 
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Figure 24. Total head loss vs. filtrate volume for diatomite filters 
without body feed 

From Baumann (6, p. 81) filtering ferric chloride coagulated 
water with 0.15 lb/sq ft 0535 precoat with no body feed. Influent 
turbidity = 1.0 units. 
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therefore, conformity with equation 18 for cake filtration of a compres

sible precipitate. The slope of these curves is equal to (l/]__e). Values 

of the cake compressibility (s) calculated for Figure 24 yield values of 

0.51 at 2, 4, and 5 gpm/sq ft and 0.<8 at 1 gpm/sq ft. 

Baumami also observed that tho use of adequate body feed to completely 

preclude the development of a surface sediment layer would cause the head 

loss curves to become linear. 

4. Surface removal observations 

On the basis of the foregoing equations for cake filtration, it can 

be concluded that the presence of a head loss vs. volume relationship which 

approaches an exponential curve is an indication of the formation of a 

partially compressible surface cake. To cause such exponential development 

of head loss, the surface cake must have adequate strength to bridge across 

the sand openings and resist the hydraulic forces tending to wash the de

posited material deeper into the bed. 

The presence of such e surface cake development was evident when fil

tering Ames filter influent water at low rates of filtration. For example, 

a layer of calcium carbonate precipitate was apparent on the sand surface 

at all filtration rates in run 18. At the lowest rate of 1 gpm/sq ft, 

this layer appeared l/l6 to l/8 in. thick. When backwashed, the layer 

disintegrated into large pieces, many of which were up to one inch in 

major dimension. These particles could not be removed by backwashing and 

resisted further disintegration, indicating that the layer had been strong

ly compressed. The surface layer was not so thick at 3 gpm/sq ft and left 

particles unwashed of about l/4 in. maximum major dimension. At 5 gpm/eq 

ft the layer was thin and broke into pieces less than l/8 in. in major 
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dimension, most of which were removed in backwashing. 

The development of a compacted surface layer was not evident in any 

of the filter runs on water containing precipitated hydrous ferric oxide. 

While the sand surface was generally covered with a layer of red iron pre

cipitate, the layer was soft and backwashed from the filter without diffi

culty. 

5. Demonstration of conformity with surface cake equations 

It can be hypothesized from the foregoing observations that head loss 

development on a aand filter is the sum of the head loss caused by removal 

in the aand bed plus the head loss caused by the surface cake when such a 

cake develops during the run. The head loss caused by rénovai within the 

bed should develop in nearly a linear manner at constant sediment loading 

rates, since the sand will act as a rigid matrix to prevent compression of 

the sediment. The head loss caused by the surface cake should develop 

exponentially in accordance with equation 18. 

To test the validity of this hypothesis, an attempt was made to sep

arate these two components of head loss development, for the top sand 

layer, for all filter runs on Ames filter influent water. A tangent line 

representing head lose in the sand bed was fitted to the slope of the 

initial head loss development. The choice of slope wae based on the as

sumption that the initial slope, before the surface cake had time to de

velop, would represent the linear development within the sand layer. The 

increase in head loss above this tangent line was assumed to be the de

velopment in the surface cake. This increase in head loss wae plotted on 

log-log paper against filtrate volume to determine if it was exponential 

and in accordance with equation 18. 
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Figure 25 for run 24 is typical of these curves and indicates con

formity with an exponential equation. The slope of the curves is equal 

to (l/i„e). Values of the cake compressibility (s) calculated for all 

runs on Ames filter influent water are recorded in Table 13» Some 

Table 13. Particle compressibility "s" in runs 18» 19, 20, 24 and 25a 

Bon Filtration rate 

no. 1 2 3 4 5 6 7 

18 0.75 0.65 0.65 0.62 0.65 

19 0.69 0.51 0.51 0.50 

20 0.60 0.60 0.60 

24 0.55 0.55 0.50 0.52 0.50 

25 0.63 0.55 0.52 0.4 5 

aBased on Eq 18. 

decrease in cake compressibility (s) is apparent at higher rates. This is 

in accord with the observations of Ruth (50) who explains this as a time 

phenomena. Less time is available for compression of the cake at higher 

rates, and thus lower values of compressibility (s) are obtained. Theo

retically, the cake compressibility (a) should be independent of the rate. 

Compressibility may vary for the different runs due to slight differences 

In the particle characteristics. The overall average value of cake com

pressibility is 0.59« 
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Figure 25 • Run 24, surface cake head loss vs. filtrate volume 

Filtering Ames filter influent water diluted with tap water 
to regulate turbidity and stability. Surface cakr head loss 
component above estimated initial tangent to top 1 in. layer 
head loss curve shown in Figure 22. 
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E. Conclusions 

From the foregoing observations, several conclusions can "be made con

cerning the cause of an optimum rate tendency as follows! 

a. Head loss which increases at a more rapid rate as the run pro

gresses is the result of the formation of a compressible cake 

on the sand surface. 

b. Total head loss development in such cases is the sum of the loss 

in the sand bed and in the surface cake. For constant loading 

rates, the loss in the sand bed probably develops in a linear 

manner, while the loos in the surface cake develops in an ex

ponential manner in accord with established equations for cake 

filtration. 

c. An optimum rate tendency can be expected when the particles being 

filtered are of such nature as to have adequate strength to form 

a surface cake which can resist hydraulic forces trying to wash it 

into the bed. The surface cake thus formed is subjected to in-

creasing compressive forces as the run progresses. The gradual 

compression of the cake reduces its permeability and thereby in

creases the hydraulic gradient necessary to maintain constant 

flow rates. The reduced permeability Improves the opportunity 

for further surface removal and further compression. 

d. At higher filtration rates, deeper penetration takes place re

gardless of the presence or absence of em optimum rate tendency. 

The improved production at higher rates, in runs with an optimum 

rate tendency, is the result of a smaller fraction of the suspended 
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matter being removed in the surface cake. This permits a larger 

volume of water to be produced before an appreciable surface 

cake develops. 

f. The lowest rate at which the head loss development approaches 

linearity is the optimum rate. Higher rates, above the optimum, 

result in leas production since the surface cake filtration in

fluence has been reduced so that the head loss development is 

similar to that associated with suspensions which do not exhibit 

an optimum rate. 

g. Suspensions for which head loss development is nearly linear do 

not exhibit an optimum rate tendency. With such suspensions, 

higher rates result in reduced production to a given total head 

loss due to the higher Initial loss of head. The higher initial 

head loss leaves less head loss available for the increase which 

occurs during the run. 
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VII. EXPLANATION OF EFFLUENT QUALITY BEHAVIOR 

The filter effluent quality behaved in much the same manner irro-

gardl@BB of the influent water type or the presence or absence of an op

timum rate tendency. Certain general observations concerning effluent 

quality behavior are discussed in the following paragraphe. 

A. Effect of Filtration Bate on Effluent Quality 

Effluent quality gets poorer at higher filtration rates. The effect 

of filtration rate on effluent quality was studied following run 25 in 

which Ames Filter influent water diluted with tap water was filtered. All 

three filters wore operated at several different rates for a short period. 

The beat water quality following the initial recovery period wae observed. 

The results of this study are shown in Figure 26. At rates below 4 gpm/sq 

ft, the curve is quite flat with only slight changes in quality at dif

ferent rates. Above 4 gpm/sq ft, the curves turn up sharply indicating 

more rapid degradation of initial quality as filtration rates are in

creased. 

The effect of filtration rate on effluent quality does not soem to 

follow any simple mathematical relation. These data do not fit a straight 

line on either semi-log or log-log paper. 

A water of zero turbidity or zero iron content was never achieved in 

any of the filter runs, even at rates as low as 0.7 gpm/sq ft. Figure 26 

indicates this, since the curves are nearly horizontal at 2 gpm/sq ft. 

Apparently, some fraction of the particles, due to size or electrical 

charge characteristic, cannot be filtered even at extremely low rates. 
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Figure 26. Initial effluent quality vs. filtration rate 

Quality following the period of effluent im
provement at the beginning of the fil ter run. 
Special study of the effect of filtration rate 
on initial effluent quality conducted follow
ing run 25. 
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Such a behavior might "be expected considering the fact that the sus

pensions being filtered were heterogeneous in size and, most likely, also 

in charge characteristic. The hydrous ferric oxide particles generally 

ranged from 1 to 20in size with a majority about • Calcium car

bonate particles in the Ames filter influent water ranged from 1 to 10^ 

with a few observations of particles up to 40^. These particle size dis

tributions were observed with a Sedgwick-Bafter counting chamber, using 

a calibrated ocular micrometer in the eyepiece of the microscope. Ob

servations were made at 100 and 430 power magnification and it is possible 

that some particles smaller than one were present but eould not be 

readily observed. 

V/ith this range in particle size, one would expect the smaller frac

tions to be less easily filtered by interstitial straining than the large 

fractions. By the electrokinetic mechanism of filtration, those particles 

v/ith the unfavorable charge characteristic would be most difficult to re

move. 

Therefore, whether the principal mechanism is straining or electro-

kinetic attraction, the increment of quality improvement at successively 

lower rates would become smaller and smaller due to the fact that the par

ticles remaining are the most difficult fraction to remove. As rates are 

progressively increased, the quality will degrade more and more rapidly 

as the more easily removed particle fractions are forced through the bed. 

The best filtration rate would lie in the more horizontal portion of this 

curve below 4 or 5 gpm/sq ft. It is interesting that the optimum rate for 

maximum production per run was generally between 3 and 5 gpm/eq ft. 
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B. Filtrats Quality at Various Depths 

The presence of some turbidity or iron in the effluent at all rates 

indicates that the entire filter is playing some active part in the clari

fication. To investigate the validity of this statement, the relationship 

between iron removal and depth was studied in runs 21 and 22. Water was 

permitted to flow continuously through capillary tubes attached to the 

piezometer sampling connections at successive depths in the filter. At 

periodic intervals, samples were collected at each depth and analyzed for 

total iron content. It was observed that some iron removal does take 

place between each piezometer connection at all rates of filtration. The 

full filter is thus contributing to the filtration action. The amount of 

iron removed in a lower lamina of sand, however, is much less than in a 

lamina near the surface. This suggests that perhaps any lamina in the fil

ter can only remove some fraction of the iron which it receives. If this 

fraction were constant, the iron content of the water plotted against 

depth, for a clean filter, should plot as a straight line on semi-log 

paper. 

Ives (44) has recently proposed a mathematical expression for the re

lation be i. ween time, depth, and concentration of remaining sediment in the 

filtrate. According to his equation for a clean isotropic filter bed, and 

for a suspension of uniaize, homogenious particles: 

-kl 
I = I0 o Eq 19 

Where : 

I = Concentration of suspended particles in the flow at any 
depth 

IQ « Concentration in the filter influent water 
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k = Constant called initial rate factor 
1 =* Distance from the filter surfaces. 

Such an exponential equation will plot as a straight line on semi

log paper. Iron concentration in the filtrate vs. depth is plotted in 

Figure 2? for runs 21 and 22. This figure indicates that Ive's equation 

Is not completely valid when applied to a non-ieotropic filter bed and a 

heterogeneous particle suspension. 

The curves for all three rates are nearly linear in the top 6 in. of 

sand indicating conformity with Ives1 equation. This portion of the aand 

bed appears to be nearly uniform in size. Below the 6 in. depth, the 

points are more eratic and follow a slight curve. The much flatter slope 

in this lower region indicates a much less efficient removal and a wide 

divergence from Ives1 equation. This divergence is due both to a non-

isotropic sand bed and to the heterogenious particle suspension described 

in the previous section. The filter sand is a graded sand and gets con

siderably coarser at greater depth. It is impossible to state, on the 

basis of the work done in this study, which of these two factors is more 

responsible for the divergence. Additional work should be done with a 

uniform sand filter to study the single effect of the heterogeneous paro

tide suspension. 

C. Effluent Quality During a Filter Run 

At lower rates of filtration, the effluent quality remained fairly 

constant throughout a filter run. At higher rates, however, the effluent 

quality gradually degraded as is illustrated in Figure 12 and Table 10. 

In some cases, the effluent quality would remain fairly constant through 
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the early part of the run. and then gradually degrade. 

Thle "behavior is rather unexpected since the entire filter "bed is 

playing an active role in filtration. As the filter run progresses, the 

"burden of removal moves deeper and deeper into the filter bed. As a 

greater burden is forced deeper into the filter bed, one would expect the 

effluent quality to degrade. This does not occur at the lower rates of 

filtration. A study of the relationship between iron concentration and 

depth at various intervals during the filter run may shed some light on 

this anomaly. Figure 28 shows this relationship at various times during 

run 22 conducted at a filtration rate of 4 gpm/sq ft. A family of straight 

lines is apparent on Figure 28. As the run progresses, the upper portions 

of the bed cease to follow Ives' equation 19 as they get dirty. They are 

replaced, however, by a deeper region in the filter which ie still clean 

enough to follow Ives1 equation. Fewer and fewer of the lower filter 

layers follow the flat slope observed on the clean filter. It is hypoth

esized that gradual effluent degradation will begin when the filter be

comes sufficiently dirty that the straight line obeying Ives' equation 

continues to the bottom of the filter. It is further hypothesized that 

the heterogeneous particle dispersion is more responsible for the non

conformity with Ives1 equation than the nonuniformity of the sand bed. 

These hypotheses ere not verified since they are outside of the objectives 

of this study. They should receive further attention in a separate study. 

D. Relationship of Curve Type to Effluent Quality 

It would be convenient if an operator could detect the tendency toward 

passage of excessive material through his filters by observation of his 
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Figure 27. Iron concentration in the fil crate va. depth for runs 21 and 22 

At three different rates on a clean filter after 0.6 hours of 
operation. 
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head loss vs. time charts. Hudson (38) has suggested that a linear curve 

would be an indication of this tendency. Figures 8, 9. and 10 would in

validate this statement as evidenced by good quality water produced at 

various rates in which the head loss vs. time curves were nearly linear. 

On the other hand, a head loss vs. time curve in which the head loss 

goes up at an increasing rate as the run progresses does not necessarily 

preclude the passage of excessive material as evidenced by Figure 14 for 

run 19. in which excessive material was passed at high rates with this 

type of head loss developing t. 

The only conclusion, if any, tn&t can be drawn from these observa

tions is that good effluent quality is not necessarily associated with any 

characteristic head loss vs. time curve. 

E. Evaluation of Predominant Removal Mechanism 

Hydrous ferric oxide particles precipitated from the raw city water 

by aeration and slow mixing were observed to be extremely fine, as de

scribed in section VII A. With the coarse sand in use in the first eight 

filter runs (1.05 mm effective size) it was impossible to get adequate re

moval of these fine particles at rates above 2 gpm/sq ft. The particles 

averaged about 5 ft in size and ranged from 1 to 2Q ft • Since the par

ticles were small, experiments were conducted using ferric chloride solu

tion in city tap water to try to precipitate a larger particle which might 

be filterable at somewhat higher rates on the coarse aand in use. 

Laboratory jar tests and subsequent pilot plant operation indicated 

that a much larger particle could be produced in this manner. Particles 

between 20 and 50 h predominated with a few as large as 100 h and a few 
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Figure 28. Iron concentration in the filtrate vs. depth at various times during run 22 

Bate of filtration was 4 gpm/sq ft. 
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less than 20y^ . Bun 4 web conducted using water prepared in this manner. 

Contrary to expected results, the large particles were even more difficult 

to remove than the 1-20 Jj particles, with excessive iron passing through 

the filter at rates as low as 1 gpm/sq ft and at a head loss of only 1 

ft. City tap water with 10 mg/l iron added in the form of ferric chloride 

solution had a pH of 7.6. This should be approximately the lao-electric 

point of the floe as observed by Stanley (51) and, therefore, it would be 

expected that the iron would be filtered with ease. In these runs, the 

head loss vs. filtrate volume curves were approximately linear. This type 

of particle would be described as a very "weak floe" since it has the fil

tering characteristics of a weak floe described by Hudson (35) (see p. 25). 

In a further attempt to alter this particle in some manner to make it 

filterable, further jar tests were conducted using a commercial coagulant 

aid, liaico 600. Large distinct particles averaging 100 A in size were 

precipitated. This additive was used in run 5 with no improvement in the 

iron removal attained. Excessive iron passage occurred during the entire 

filter run at 2 and 3*5 gpm/aq ft. Iron began to pass at a head loss of 

1.5 ft at 1 gpm/sq ft. 

Run o was made in a further attempt to improve the filterability of 

the particles by adjusting the pH to a high value of approximately 10.6 

which yielded a large heavy particle in laboratory jar tests. Mo improve

ment in iron removal was obtained. 

It was apparent from runs 1 through 6 that the size of hydrous ferric 

oxide particles had little to do with the relative iron removal efficiency 

of the filter. The larger particles were less filterable than the smaller 

particles. This behavior may be interpreted, as follows, in terms of the 
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three mechanisms of filtration previously discussed, namely: interstitial 

Btraining, sedimentation, and electrokinetic attractive forces. If the re

moval mechanism is primarily mechanical in nature, such as interstitial 

straining or sedimentation, then larger particles should be more filterable 

than small particles. The opposite behavior may be explained by either of 

the following two possible hypotheses. The internal bonding of the par

ticles, which are formed under very gentle mixing, may be of insufficient 

strength to resist the hydraulic shearing forces that exist within the 

filter; or, the external electrical charges carried by the particles may 

not be suitable for attachment either to the sand or to previously de

posited particles. Particles which are formed and filtered at a pH other 

than the iso-electric point could be expected to exhibit both characteris

tics. 

On the basis of these observations, ©lectrokinetic forces appear 

primarily responsible for the removal of hydrous ferric oxide particles. 

This is in agreement with the conclusions of Stanley (51) and Stein (52). 

Particles removed by such a mechanism should have little preference for 

removal on any particular position on the sand grain. Such appears to be 

the case. When the dirty filters were observed with a hand lens, iron 

particles appeared to ourround the sand grains completely. They exhibited 

no preference for horizontal surfaces or interstices. It was further ob

served on several occasions that the presence of some dissolved iron in 

the filter influent water improved the removal efficiency. Precipitation 

of the dissolved iron seemed to be catalyzed by the particles already 

deposited. Its precipitation within the bed «earned to aid in bonding the 

small particles in suspension to those already deposited in the filter. 
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Under these conditions, greater removal took place in the upper regions 

of the "bed. Both of these observations support the importance of the elec-

trokinetic mechanism in the removal of hydrous ferric oxide particles. 

Particle size in the Ames filter influent water was observed to range 

from 1 to 10/{ : thus, the aerated mixed raw water containing hydrous fer

ric oxide particles and the Ames filter influent water containing calcium 

carbonate particles had about the same particle size. Yet, the Ames filter 

influent water had a strong tendency toward surface removal; whereas, the 

water containing hydrous ferric oxide particles did not. 

What are the reasons for the difference in the removal of these two 

types of particles? The calcium carbonate particles appeared granular and 

nearly spherical under the microscope, in sharp contrast with the gela

tinous irregular hydrous ferric oxide particles. Since the particle size 

was about the same in both waters, one would suspect cither the internal 

structure, or the external charge characteristic or both to be responsible 

for the different filtering characteristics. When the dirty filters were 

observed with a hand lens, the calcium carbonate particles appeared to pre

dominate on the upper surfaces, at and above the interstices of the aand 

grains. 

These observations indicate a predominance of interstitial straining 

and sedimentation as mechanisms of removal for this type of particle. A 

granular or less gelatinous particle of this type would lend itself to a 

mechanical removal. They should be capable of bridging at the inter

stices and resisting the hydraulic forces tending to cause their disinte-

gration. 

The term "strong floe", which is frequently used to describe an easily 
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filtered particle ouspension, may have two connotations when viewed in 

light of the foregoing observations. It n$ay mean a particle which pos

sesses strong internal bonding, such as the calcium carbonate particles, 

and which can then be removed mechanically by interstitial straining or 

sedimentation. However, the removal of such particles may also be aided 

by electrokinetic forces if the external charge characteristic is suitable. 

Thus, the second connotation of the term E! strong floe" refers to the ex

istence of a suitable external charge characteristic on the particles to 

permit their removal by the electrokinetic mechanism. Some particles, 

such ae the hydrous ferric oxide particles, may have weak internal bonding 

and are incapable of removal primarily by interstitial bridging. Such 

particles must depend on the electrokinetic mechanism for removal. If 

they do not bear suitable electrical charge characteristic, they will not 

be readily removed by the filter. 

F. Effect of Bate Changes on Effluent Quality 

On several occasions in the earlier runs, a disturbance in rate ac

cidentally occurred for reasons previously outlined in section V E. Such 

a rate disturbance resulted in the passage through the filter of consider

able material which had been previously deposited. The passage of such 

material was accompanied by a reduction in head loss. The filters re

covered quite rapidly, and soon were producing water of quality equal to 

that produced prior to the disturbance. 

This phenomenon was studied more objectively on several occasions by 

causing a moderate rate change on a dirty filter near the end of a filter 

run. Figure 29 presents the effect of such an experiment on the effluent 
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Figure 29. Run 14, effluent iron content vs. time following rate disturbance 

Following run 14 on filter 2 at 3 gpm/sq ft on water containing hydrous 
ferric oxide particles. Bate increased from 3.0 to 4.20 gpm/eq ft for 
approximately twenty minutes, and then returned to initial rate. 
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quality at the end of run 14 on filter 2. The rate was changed from 3.0 

to 4.2 gpm/sq ft in this experiment. The area under the curve represents 

a total of 2.28 grams of iron flushed from the filter "bed. While this is 

only about 3*3 percent of the total iron previously deposited in the bed, 

it was accompanied by a reduction in head loss of 28 percent. 

Similar observations were made when filtering city filter influent 

water. Bate changes of as little as 10 percent were observed to have «. 

detrimental effect; however, the greater the rate change, the greater the 

effect on effluent quality and head loss. The duration of the rate change 

had little effect. A change for less than a minute would have about the 

same effect ae a longer change lasting 10 to 20 minutes. The amount of 

sediment passed increased with the run length at the time of the disturb

ance. 

From these observations, it is evident- that the material removed in 

the filter is attached rather delicately to the sand or to previously de

posited material. The manner of distribution of the material within the 

filter is peculiar to the specific rate of operation. Any rate increases 

result in unbalancing the equilibrium between the attaching forces which 

hold the material and the shearing forces of the liquid which try to tear 

it loose. After sufficient material has been flushed tnrough the bed, 

a new equilibrium will be reached between the attaching forces and the now 

reduced shearing forces. The effect of rate increases on head loss la 

most pronounced in the dirtiest portions of the filter. Table 14 sum

marizes the effect of a rate increase on the head loss for run 14, filter 

2, before and after the rate change described in Figure 29. It is in

teresting to note that in the upper 9 inches, the reduction of head loss 
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Table 14. Effect of rate increase on head loss, ruux 14, filter 2 

Laminae of the sand filter (in. from surface) 

0-2 2—4 4-6 6-9 9-15 15-21 21-27 

Head Loss Before (ft) 3.50 1.68 1.25 1.15 1.49 0.60 0.13 

Head Loss After (ft) 2.45 1.17 0.88 0.81 1.09 0.48 0.12 

$ Reduction 30 30 30 30 27 20 8 

$ Change in Porosity 1 2 3 3-5 6 9 5 

was uniform. However, the change in porosity increased with depth. The 

upper layer which was tne most filled with material had the greatest head 

loss change but the smallest change in actual porosity. This is quite un

expected. One might expect the dirtiest portion of the bed to lose the 

most material on a rate increase. The opposite observation would lend 

support to the hypothesis previously suggested that in a heterogeneous 

suspension the different particles are removed with varying degrees of 

ease. Some are so difficult to remove that they pass the filter even at 

very low rates. Others with intermediate ease of removal reach interme

diate depths. The flushing action of the rate change has increasingly 

greater affect on those particles at lower depths » which being more dif

ficult to remove, are less firmly held in the filter. 

The same conclusion can be reached by analysis of the head loss 

change data of Table 14. Since laminar flow conditions exist, the uni

form percentage drop in head loss in the 4 upper layers reflects a uni

form percentage drop in hydraulic gradient. The absolute level of the 

gradient is much higher in the upper layers than in the lower layers both 
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before and after the rate change. Thus, those particles in the upper 

layers resist greater hydraulic shearing forcee before and after a rate 

change than the particles at lower levels. The ability of the particles 

in the upper levels to resist greater hydraulic gradients indicates strong

er attachment to the sand. 

The moat important conclusion to be reached from these observations 

la that a rate increase, during a filter ran has a very detrimental effect 

on filter effluent quality. Such rate increases should be positively 

avoided. This fact is not recognized by many water treatment plant opera

tors. It is the practice in some treatment plants to increase filtration 

rates on dirty filters when plant rates are increased. This and other 

sources of rate change such as air binding, hunting rate controllers, and 

filter bumping should be eliminated. 

These detrimental affects have gone unobserved in the past due to the 

absence of continuous turbidity monitoring devices. The development and 

use of the device used in this research should do much to help the pro

gressive operator see poor operational practices and correct then. 

6. A Choice: Constant Bate, Constant Pressure or 
Uncontrolled Filtration 

The time tested method of constant rate filtration advocated by 

Fuller (26) at tbs turn of the century has recently been challenged by two 

alternative methods of operation namely: constant pressure} and uncontrolled 

filtration. 

^Sometimes called declining rate filtration. 

^Sometimes called variable rate filtration. 
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1» Constant rate filtration 

Hate of filtration is held constant by means of a rate controlling 

device which automatically opens or closes a filter effluent valve to 

maintain the pre-set rate of flow. A disadvantage of this system is the 

initial and operating cost of the rate controllers. An improperly func

tioning rate controller may continually hunt for the desired valve posi

tion, first going above and then below the desired rate. Such rate varia

tions will reduce the effluent quality. 

Many treatment plaints operate at a constant rate for several days. 

The rate is dictated by the average consumption. Constant plant input 

simplifies chemical handling and feeding problems. One major advantage of 

constant rate filtration is the ease of balancing a constant plant input 

to the filter output. For a small plant with only a few filters, this is 

a distinct advantage. In addition, sixty years of constant rate experi

ence have clearly shown that good effluent water quality can be obtained 

by this means of operation. 

2. Constant pressure filtration 

This method of operation involves setting the effluent valve to yield 

a desired maximum filtration rate at the beginning of the filter run and 

thereafter allowing the rate to decrease gradually as the filter becomes 

dirty. If the water level is held reasonably constant above the sand sur

face, the filter is actually operating with a total pressure drop through 

the sand, gravel, underdrains and piping which is constant throughout the 

run. 

The principle disadvantage of this method is the difficulty of bal

ancing a constant plant input to filter output. Since the rate on each 
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filter la constantly decreasing, it is difficult for a small plant to 

equate the total filtration rate to a constant plant input rate. 

Advantages of this method include the elimination of the initial and 

operational costs of the rate controller and the elimination of associated 

problems such as the detrimental effect on waber quality due to the hunt

ing controller. Some rate measuring device is still necessary so that the 

full cost saving of the rate controller is not realized. 

While relatively little experience has been obtained with constant 

pressure filtration, some writers claim an improvement of water quality, 

and water production per run by this operating procedure (31,39,40). 

While a complete study of constant pressure filtration is beyond the 

scope of this study, one filter was operated in this manner during run 23. 

The filter was started at 6 gpm/aq ft and the rate was permitted to de

cline as the head loss through the filter increased. The head loss de

velopment is shown in Figure 10 and the effluent quality is shown in Fig

ure 12. From Figure 10 it is evident that the volume of water produced to 

a given terminal head loss was nearly equal to that produced on the filter 

operated at a constant rate of 6 gpm/aq ft. The effluent quality was much 

better in the constant pressure run as shown in Figure 12. In fact, the 

constant pressure filter had better effluent quality than the constant 

rate filter at 4 gpm/sq ft. These observations support the reports 

(31,39,40) regarding quality, but do not support the reports of increased 

water production. 

Hudson (40) has suggested that constant interstitial velocities are 

present during a constant pressure filter run. Since laminar flow condi

tions exist, constant velocity would be evidenced by constant head loss 
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during the run. It is readily apparent from the increasing head loss 

shown in Figure 10 that increasing velocities do take place and that 

Hudson'q suggestion is erroneous. 

The improvement in effluent quality with constant pressure filtration 

makes it an attractive operating procedure. In large plants where many 

filters are in service, the difficulties involved in "balancing Inflow and 

outflow rate, and maintaining a constant water level, may "be fairly easy 

to overcome. In small plants however, no easy solution is evident. 

3. Variable rate filtration 

In some large plants, the filtration rate is controlled by the water 

level in the clear well following the filters. The filtration rate is per

mitted to increase as the clear well water level decreases; and the rate 

decreases as the clear well level rises reducing the available head for 

filtration. A notable example of this type of operation is the Chicago 

South District Filtration plant where some of the many filters are operated 

in this manner. Baylis (17) has reported no detriment to the water quality 

due to the variable rates. Since the effluent quality is detrimentally 

affected by increasing the rate of filtration on a dirty filter, one would 

expect reduced water quality to be the result of variable rate filtration. 

However, at Chicago the rate changes are probably quite gradual due to the 

size of the city. If the period of rate change is fairly long end the fil

ter run length fairly short as they are in Chicago, no appreciable detri

ment may develop. In small towns, however, where significant rate changes 

may occur during a fraction of a run length on a dirty filter, appreciable 

material may be forced from the bed. 

This method of operation should be avoided as should any other 
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operational method which permits rates to increase even a email amount 

for a short period on a relatively dirty filter. 
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VIII. SUMMARY AND CONCLUSIONS 

A. Present Status of Water Filtration 

The development of the rapid aand filter began in 1884 and was stan

dardized by Fuller*a (26) historic research reported in I898. The long 

years of relatively successful operation of sand filters at 2 gpm/sq ft, 

as originally suggested by Fuller, led to the common acceptance of this 

rate as the maximum acceptable rate of filtration. However, Fuller sug

gested that considerably higher rates were possible. 

This suggestion has been verified in the past twenty yeare by a large 

amount of research and plant scale experience at higher rates of filtra

tion. Many plants are now operated at higher rates during peak demand 

seasons. However, no research has pointed the way to the selection of the 

best rate of filtration. The best rate of filtration will be the rate 

which produces the largest quantity of acceptable water per filter run. 

It is to this problem that this research is directed, namely: 

a. to determine whether there is an optimum rate of filtration for 

a given water supply and for a given filter from the standpoint 

of the volume of acceptable water produced per filter run. 

b. to establish simple criteria by which the operator can determine 

whether an optimum rate can be expected for his particular water 

quality; and, if so, how the optimum rate can be identified. 

c. to explain the factors which result in the presence or absence 

of an optimum rata of filtration on any water supply. 
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B. Investigations 

A pilot plant was constructed which included three 6 in, ID sand fil

ters, each with a 30 in. layer of graded sand supported by 9 inches of 

graded gravel. The pilot filters are capable of operation between 2 and 

10 gpm/so ft and are equipped with combined piezometer and sampling con

nections at short intervals through the filter depth. Twenty-five experi

mental nans were conducted on the pilot filters over a period of 18 months 

on two typos of influent water described below; 

a. Water containing precipitated hydrous ferric oxide in suspension. 

This water was obtained either by aerating and mixing the raw 

well water of the Ames municipal treatment plant, or by adding 

iron salts to the Ames tap water followed by mixing to cause pre

cipitation. The iron precipitated from the raw water was found 

to be more filterable and was used more frequently, 

b. Water containing primarily calcium carbonate particles in sus

pension. This water was obtained from the influent to the Ames 

municipal filters following a typical two stage, split treatment, 

lime-soda ash softening process. In some filter runs, this water 

was diluted with tap water to regulate turbidity and stability. 

The three filters were operated at different constant rates during 

the various filter runs to observe the existence of an optimum rate. The 

relation between total head loss and filtrate volume was plotted and used 

to select the optimum rate and to detect the identifying characteristics 

and the possible cause of the optimum rate tendency. 

Effluent quality was monitored on all filter runs with continuous 
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reading turbidimeters. During filter runs on rater containing precipi

tated iron hydrate, effluent quality was also monitored by quantitative 

colorimetric iron determinations. This data permitted an evaluation of 

the effect of increased filtration rates on effluent quality. 

In two filter runs, the filtrate quality at various depths in the 

filter was studied at intervals during the filter run. These data per

mitted the evaluation of the validity of recently proposed equations for 

the relation between filtrate quality and depth. It also formed the basis 

for several hypotheses explaining effluent quality behavior. 

Head loss development was observed by readings of the piezometer 

tubes at two hour intervals. Analysis of the head loss development in the 

various layers of the sand bed provided an explanation of the principal 

cause of en optimum rate tendency. It also permitted observation of the 

relative utilization of the filter voids at various filtration rates, and 

the gradual transfer of the burden of removal deeper into the filter ae 

the run progressed. 

During one filter run, constant pressure filtration was compared with 

constant rate filtration from the standpoint of water production and ef

fluent quality. 

C. Conclusions 

1. Presence and identification of an optimum filtration rate 

In constant rate filtration, several conclusions can be made with re

gard to the presence and identification of an optimum rate of filtration 

as follows! 
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a. In the filtration of suspensions which cause head loss^" to de

velop at an increasing rate as the filter run progresses, greater 

water production per run can he expected as rates are increased. 

An optimum rate may he reached beyond which further rate increases 

result in decreased production. 

b. The optimum rate tendency described above is absent when filter

ing suspensions which cause head loss to develop in nearly a 

linear manner. Head loss development curves for such suspen

sions are nearly parallel at different filtration rates. Sine© 

the higher rates cause higher initial head losses, lower pro

duction can be expected to any given terminal head loss. 

c. Tne optimum rate can be identified as the lowest rate at which 

the head loss development curve becomes most nearly linear. 

d. At and above the optimum rate, head loss development curves are 

nearly parallel and resemble the curves of a suspension with no 

optimum rate tendency. 

2. Cause of the optimum rate tendency 

Several conclusions can be made with regard to the cause of the opti

mum rate tendency as follows: 

a. The increasing rate of head loss development associated with an 

optimum rate tendency is caused by the development of a compres

sible surface cake on the Band surface. 

b. The surface cake only develops when filtering a suspension which 

has a strong tendency for surface reeoval, and in which the par-

^Total head loss vs. volume of filtrate relationships. 
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tides have adequate internal strength to resist the hydraulic 

shear forces tending to wash the particles into the filter. 

c. Total head loss in the filter bed is the sum of the surface cake 

head loss development and the head loss development within the 

sand bed. 

d. The head loss within the sand bed develops in a linear Banner due 

to the rigid matrix of the sand grains which prevents compression 

of the deposited material, 

e. Head loss in the compressible surface cake increases exponentially 

as the filter run progresses. The exponent depends on the cako 

compressibility and averaged 2.4 for the Ames filter influent 

water. This development is in agreement with established equa

tions for cake filtration. 

f. Increased production at higher rates is the result of two factors; 

greater utilization of the filter bed due to deeper penetration, 

and a reduction of the fraction of the particles removed in the 

surface cake. The latter factor permits greater production before 

a significant surface cake is produced. 

g. At the optimum rate of filtration, the surface cake influence has 

been minimized and the head loss development approaches linearity. 

Above the optimum rate, production to a given terminal total heed 

loss decreases since the underlying cause of aa optimum rate tend

ency has been minimized or eliminated. 

3. Effluent quality behavior 

Several conclusions can be made regarding the reasons for effluent 

quality behavior as follows: 
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During a brief period at the beginning of each filter run, rela

tively poor effluent quality is obtained. The poorest quality 

occurs at approximately the theoretical displacement time of the 

water in the sand, gravel, and underdrains. 

Following the peak of poor quality at the beginning of the run, 

the suspended matter in the effluent rapidly decreases to some 

minimum level. 

This quality may then remain fairly constant throughout the fil

ter run, or may gradually degrade during the entire run or the 

latter portions of the run. 

The effluent quality following the initial improvement period is 

decreased by increased filtration rates. The curve of quality 

vs. filtration rate for Ames filter influent water is nearly flat 

at the lower rate when quality is plotted as the ordinate. The 

curve becomes increasingly steep at higher rates, particularly 

above 5 gpm/sq ft. Thus, the effect of filtration rate on ef

fluent quality degradation becomes more and more important at 

progressively higher filtration rates. The relation between 

quality and rate did not fit any simple mathematical formulation. 

Effluent water quality may not be acceptable at the optimum fil

tration rate selected from production considerations. In such a 

case, the selected operating rate must be reduced to meet the 

desired quality. 

Complete removal of suspended material was not attained at rates 

as low as 0.7 gpm/sq ft, indicating that some fraction of the 

particles are of such size or charge characteristic as to be 
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unfilterable. 

g. Good, effluent quality Is not necessarily associated v/ith any 

particular type of head, loss development curve. 

h. Based on studies with water containing precipitated hydrous fer

ric oxide particles, the relation of filtrate quality to depth 

for a clean filter followed a first order reaction in the top 6 

to 9 in. of sand ae predicted by Ives (44) for a homogeneous sus

pension and an isotropic filter. The nonconformity in the re

mainder of the filter depth is believed to be due primarily to 

the heterogeneous particle suspension. Further study of this re

lation ia needed. 

i. Aa the filter run progresses, a deeper and deeper segment of the 

filter depth follows the first order relation between filtrate 

quality and depth. It is hypothesized, but not verified. that 

effluent degradation takes place when this segment reaches the 

bottom of the filter. 

j. Bate increases on a dirty filter result in the flushing of con

siderable material through the filter before a new equilibrium 

is reached and good effluent quality is again attained. Such 

rate increases, regardless of cause, should be avoided. 

k. The electrokinetic mechanism seems primarily responsible for the 

removal of precipitated hydrous ferric oxide particles. 

1. Interstitial straining and sedimentation appear to be the pre

dominant removal mechanisms for the calcium carbonate particles 

in the Ames filter influent water. 

m. Particles removed in deeper regions of the filter bed are more 



www.manaraa.com

156 

difficult to remove and are less firmly held than particles re

moved near the surface. This is evidenced by the fact that par

ticles in the lower portions of the filter are more easily washed 

out by a sudden rate increase than are the particles in the upper 

portions of the filter. 

Constant pressure filtration results in better effluent quality 

than comparable constant rate filtration. 

Laminar flow conditions existed throughout all filter runs, in 

all layers of the filter, for all waters, and for all filtration 

rates covered by this study. 
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He later modified, the index (36) and renamed it the "filtrability index". 

x 
F iltrability index for laminar flow^ = Eq 5 

Where i 

q ia the rate of filtration and all other nomenclature aa in 
the floe strength index. 

Hudson suggested that turbulence may develop in the clogged portions 

of the bed towards the end of the filter run and that breakthrough of floe 

may be associated with the development of turbulence. In accord with this 

hypothesis, he developed an alternate "filtrability index" for turbulent 

flow. 

Filtrability index for turbulent flow = ̂  . Eq 6 

Experimental evidence will be presented in a later section to ques

tion this hypothesis concerning the development of turbulence. Since moat 

rapid sand filters continually pass a small amount of turbidity, the use 

and value of the "breakthrough index" hinge on some arbitrary turbidity 

level considered a breakthrough. 

Hudson urges better control of filtration with a desired turbidity 

level of less than 0.2 units. He cautions against unsteady flow to the 

filters, om-off operation, and surges in filtration rates due to the det

rimental effect on effluent water quality (37). 

Iwasaki (45) studied in minute detail the penetration of colloidal 

material and bacteria into slow sand filters. Beginning with rational 

differential equations for the time rate of removal of suspended matter in 

2now called the "breakthrough index" (39). 
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